

Paper Presentation

Renze Lou

03/01/2023

Pls feel free to interrupt me.

Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?

Sewon Min^{1,2} Xinxi Lyu¹ Ari Holtzman¹ Mikel Artetxe² Mike Lewis² Hannaneh Hajishirzi^{1,3} Luke Zettlemoyer^{1,2} ¹University of Washington ²Meta AI ³Allen Institute for AI {sewon, alrope, ahai, hannaneh, lsz}@cs.washington.edu {artetxe, mikelewis}@fb.com

To clear up three questions:

- *What* is in-context learning?
- *Which* aspects contribute to performance?
- *Why* A instead of B?

What is in-context learning?

VS.

In-context learning

- *Few-shot examples are used in testing*.
- <u>No</u> gradient update.

Supervised Fine-tuning (SFT)

- *Few-shot examples are used in training*.
- Gradient update.

GPT-3 has 1.3B parameters!

Fine-tuning such a **big guy** is **unaffordable** (for most of us)!

In-context learning is more versatile and practical!

Which aspects contribute to performance?

- 1. The input-label mapping, i.e., whether each input x_i is paired with a correct label y_i .
- 2. The distribution of the input text, i.e., the underlying distribution that $x_1...x_k$ are from.
- 3. The label space, i.e., the space covered by $y_1...y_k$.
- 4. **The format**—specifically, the use of inputlabel pairing as the format.⁷

Figure 7: Four different aspects in the demonstrations: the input-label mapping, the distribution of the input text, the label space, and the use of input-label pairing as the format of the demonstrations.

The input-label mapping.

Let's break the input-label correspondence.

The prompt with ground truth outputs (top) and the prompt with random outputs (bottom).

Figure 4: Results with varying number of correct labels in the demonstrations. Channel and Direct used for classification and multi-choice, respectively. Performance with no demonstrations (blue) is reported as a reference.

Takeway#1:

The input-label mapping is not necessarily required.

Let's use the input from another corpus.

Figure 8: Impact of the distribution of the inputs. Evaluated in classification (top) and multi-choice (bottom). The impact of the distribution of the input text can be measured by comparing \blacksquare and \blacksquare . The gap is substantial, with an exception in Direct MetaICL (discussion in Section 5.1).

Takeway#2:

The input distribution is necessary.

Let's use some random words as labels.

Figure 9: Impact of the label space. Evaluated in classification (top) and multi-choice (bottom). The impact of the label space can be measured by comparing \blacksquare and \blacksquare . The gap is significant in the direct models but not in the channel models (discussion in Section 5.2).

Takeway#3:

The label space is necessary.

Let's remove inputs or labels.

Takeway#4:

The format is necessary.

 $\mathbf{1}$

1

To conclude:

- × 1. The input-label mapping, i.e., whether each input x_i is paired with a correct label y_i .
- $\sqrt{2}$. The distribution of the input text, i.e., the underlying distribution that $x_1...x_k$ are from.
 - 3. The label space, i.e., the space covered by $y_1...y_k$.
 - 4. **The format**—specifically, the use of inputlabel pairing as the format.⁷

The Model is lazy!

- No gradient updates (**no actual "learning")** ==> simply **exploit** shallow patterns.
- The format is likely easier to exploit.
- The input-label mapping is likely harder to exploit.

Highly rely on the pre-training knowledge.

- In-context learning fulfills the model's pretraining objective (e.g., <u>next token prediction</u>).
- Just a query! The essence of in-context learning is to making a good query.
- **Domain adaption**. Quickly activate the domain-specific knowledge from LMs.

•

. . .

- How to explain some other aspects, e.g., the **order** of demonstrations^[1]?
- How about **Encoder-decoder LMs**, e.g., T5^[2]?

[1] Zhao, Zihao, et al. "Calibrate before use: Improving few-shot performance of language models." International Conference on Machine Learning. PMLR, 2021.

[2] Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." The Journal of Machine Learning Research 21.1 (2020): 5485-5551.

- [1] Zhao, Zihao, et al. "Calibrate before use: Improving few-shot performance of language models." International Conference on Machine Learning. PMLR, 2021.
- [2] Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." The Journal of Machine Learning Research 21.1 (2020): 5485-5551.
- [3] "GPT-3: In-Context Few-Shot Learner (2020) KiKaBeN," KiKaBeN Smart Tech Information: From Concept to Coding, Jan. 04, 2023. https://kikaben.com/gpt-3-in-context-few-shot-learner-2020/ (accessed Mar. 01, 2023).
- [4] M. Xie, "How does in-context learning work? A framework for understanding the differences from traditional supervised learning," SAIL Blog, Aug. 2022. http://ai.stanford.edu/blog/understanding-incontext/ (accessed Mar. 01, 2023).
- [5] Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." arXiv preprint arXiv:2202.12837 (2022).

Thanks!

Feel free to reach out.