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IN-CONTEXT LEARNING (ICL)

« Two samples:

* Review: the greatest musicians. Sentiment: positive.
*  Review: redundant concept. Sentiment: negative

« Test Sample: Review: Amazing movie. Sentiment:

* Priming by concatenation

* Review: the greatest musicians. Sentiment: positive. Review: redundant concept. Sentiment: negative.
Review: Amazing movie. Sentiment:



IN-CONTEXT LEARNING (ICL)

* Review: the greatest musicians. Sentiment: positive. Review: redundant concept. Sentiment: negative.
Review: Amazing movie. Sentiment:

«  Popularized by GPT-3
* No finetuning/gradient updates required!
* Input length during inference increases

« Highly dependent on the template/prompt



IN-CONTEXT LEARNING (ICL) - ORDER SENSITIVITY

Review: the greatest musicians.
Sentiment: positive. Review:
redundant concept. Sentiment:

negative. Review: Amazing movie.

Sentiment:

Review: redundant concept.
Sentiment: negative. Review: the
greatest musicians. Sentiment:
positive. Review: Amazing movie.
Sentiment:

Unfortunately, this ordering can
cause significant variance in
performance.
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IMPACT OF TRAINING SAMPLE AND MODEL SIZE

Large models can get great
performance, however cannot
guarantee low variance in
permutations

Adding more training samples
does not reduce variance
significantly
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ARE PROMPTS TRANSFERRABLE ACROSS MODELS?

A specific permutation’s
performance may drop from
88.7% to 51.6% by changing the
underlying model from GPT2-XL
(1.5B) to GPT2-Large (0.8B)

Taken 4 samples - all 24
permutations of prompts and
then on prediction -> calculate
pairwise Spearman’s rank
correlation coefficient.

No correlation at all
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LABEL ORDERINGS ALSO DON'T MATTER ACROSS MODELS

*  Measured across six label
patterns: NNPP, NPNP, NPPN,
PNNP, PNPN, PPNN

- Seems like random behavior
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DEGENERATE BEHAVIOUR OF BAD PROMPTS

= Most of the failing prompts suffer from highly unbalanced
predicted label distribution

= A way can be using output distribution calibration (Zhao et al.
2021)1

= Basically, using N/A as prompt and see output distribution,
then add one affine transformation to counter the imbalance

=  While that improves performance, variance seems still high
across different orders of prompts
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1Calibrate Before Use: Improving Few-Shot Performance of Language Models



HOW TO DETERMINE THE BEST ORDERING?

=  Simple way: use a dev set.
= Violates True Few shot setting where we don’t use any dev set.

= Can we generate a probing set by querying the language model instead? Basically, we are using probing
set as a substitute for dev set



PROBING SET GENERATION
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(sentence, label)

(the ending is
universally panned, 0)
(features multiple
endings, 1)

(nice movie, 1)

There is no guarantee of the validity of the labels of these artificial samples!




PROBING METRICS

= Two different methods are used to select best prompt orderings using the generated/probed samples
(minus the labels)

» Global Entropy

» Local Entropy



PROBING METRICS: GLOBAL ENTROPY

Uim = argmax P(v|c,, & T(w%); 0)
veV

V -> set of labels
Ccm -> the context found from current selected ordering
X' -> Simulated sample (except the label)
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PROBING METRICS: GLOBAL ENTROPY

Uim = argmax P(v|c,, & T(x%); 0)
veV

V -> set of labels
Ccm -> the context found from current selected ordering
X' -> Simulated sample (except the label)

pfv L ZZ ]]'{?gz,m:v}
m =

D

| | Thus, we calculate the global Entropy for a context
permutation m

GlobalE,,, = Z —p?. log pt, (allows us to combat extremely unbalanced prediction)

veV



PROBING METRICS: LOCAL ENTROPY

Pim = P(x, y/)ND(”U|Cm b T(x;); 0),veV
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Motivation: if a prompt is overly confident, it is likely that it is not behaving as desired/poorly calibrated



SUMMARY: FROM PROBING TO USING ENTROPY

* Find probe samples for each of the orderings (artificial X’ s)

* Using those x’ s calculate either Global or Local entropy for each of the orderings
» Select top k permutations having highest entropy -> Performant prompts
 Performant prompts are used to evaluate performance in different datasets




MAIN RESULTS

SST-2  SST-5 DBPedia MR CR MPQA Subj TREC AGNews RTE CB

Majority 50.9 23.1 9.4 50.0 50.0 50.0 50.0 18.8 25.0 52.7 51.8
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LocalE 76.78_2 45-13_1 83.81_7 78'15.6 71.88_0 78.53.6 69.75_8 53.63,1 79.33.7 56.81.1 52.63.9
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MAIN RESULTS - ROBUSTNESS
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COMPARISON AGAINST SUBSET OF TRAINING DATA FOR TUNING

GPT-20.1B GPT-20.3B GPT-20.8B GPT-2 1.5B

Baseline 58.97 g 61.013.9 74.510.3 066.810.8
LocalE 65.23'9 75-34.6 81.15.5 76.78_2
GlobalE 63.85.3 78.75 9 84.84 1 81.83 9
Split Training Set 62.85.3 64.26.1 75.16.8 71.47 g

= 4-shot data is split in half : dev and test set

= |LocalE and GlobalE still outperforms this technique
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CONCLUSION

= This paper effectively shows how few-shot prompts suffer form order sensitivity

= Athorough analysis has shown that order sensitivity is present across tasks, model sizes, prompt
templates, samples, number of training samples

= Without using any external dev set, the local and global entropy calculation using probed samples can
effectively detect any prompt that may cause imbalance

= Through thorough investigation, on average 13% improvement can be gotten across 11 text classification
tasks



CRITIQUE

= The limited context window already severely limits how many samples can be used as context. (Liu et al.
20212). As a result, in practice often few shot examples are filtered out, those can be used as dev set.

= While no finetuning is required, ICL itself is computationally heavy during inference due to huge context
window needed (less sparsity)

= Performance still not exactly same as full finetuning even with GPT-3, sometimes quite a bit far away.

= Performance with few shot finetuning could be compared, at least in smaller models which could serve
as a good baseline

2What makes good in-context examples for GPT-3?



FUTURE WORK

Apart from ICL, sometimes in finetuning we have trouble finding dev sets in few shot cases since we can

use all the few shot samples there. This approach can be adapted and modified to be used in calibrating
those models as well, for model selection

Is it possible to generate **ONE** artificial sample that gives the same effect as all the in-context few-
shot examples we have? This can both reduce computational load in in-context learning and effectively
use all the few-shot samples to get better performance.
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