Fast Model Editing At Scale

Allen Gao

Research Problem

How to efficiently edit large pre-trained language model (LLM)?

Challenges:

- Models are getting larger and larger
- Fine tune could easily overfit, computationally expensive
- Black box nature of representation
- Factualness and Reliability of Model

Agenda

- Background
- Related Work
- Model Editor Networks with Gradient Decomposition (MEND)
- Experiment / Result
- Future Work / Limitation
- Question?

Background

<u>Reliability</u>: Successfully changing the model's output on the problematic input.

Locality: Minimally affecting the model's output for unrelated inputs

Generality: Generating the correct output for inputs related to the edit input.

Efficiency: The computation spend on making the edit.

Background

Input	Pre-Edit Output	Edit Target	Post-Edit Output
1a: Who is India's PM?1b: Who is the prime minister of the UK?	Satya Pal Malik 🗡 Theresa May 🗡	Narendra Modi Boris Johnson	Narendra Modi 🗸 Boris Johnson 🗸
1c: Who is the prime minister of India?	Narendra Modi 🗸	_	Narendra Modi 🗸
1d: Who is the UK PM?	Theresa May 🗡	—	Boris Johnson 🗸
2a: What is Messi's club team?2b: What basketball team does Lebron play on?	Barcelona B 🗡 Dallas Mavericks 🗡	PSG the LA Lakers	PSG ✓ the LA Lakers ✓
2c: Where in the US is Raleigh?	a state in the South \checkmark	_	a state in the South \checkmark
 3a: Who is the president of Mexico? 3b: Who is the vice president of Mexico? 	Enrique Pea Nieto X Yadier Benjamin Ramos X	Andrés Manuel López Obrador —	Andrés Manuel López Obrador Andrés Manuel López Obrador X

Related Work

- Selective Fine-tuning the model with edited dataset (Zhu et al, 2020)
 - Overfit to the edited dataset, poor locality, require full training data

Train a knowledge editor to map original parameter weight(De Cao et al, 2021)
 Fail to edit very large model

- Bi-level meta learning editable training method (Sinitsin et al, 2020)
 - Difficult to edit large model, Computationally expensive

Model illustration

ENN

Knowledge editor

Related Work

Editor	Preserves model?	Only $(x_{\rm e}, y_{\rm e})$?	Batched edits?	Scales to 10B?	Few steps?
FT	1	1	1	1	×
FT+KL		×	\checkmark	1	×
ENN	×	\checkmark	 Image: A set of the set of the	×	\checkmark
KE	1	1	?	1	1
MEND	1	1	1	1	1

Editing a Pre-Trained Model with MEND

Figure 1: The proposed algorithm MEND enables editability by training a collection of MLPs to modify model gradients to produce *local* model edits that do not damage model performance on unrelated inputs. MEND is efficient to train and apply edits, even for very large models, as shown in Section 5.1.

Base Model: $f_{ heta}: \mathcal{X} \times \Theta \to \mathcal{Y}$

Model Editor Function: $E: \mathcal{X} \times \mathcal{Y} \times \mathcal{L} \times \Theta \times \Phi \rightarrow \Theta$

Loss Function: $\mathcal{X} \times \mathcal{Y} \times \Theta \to \mathbb{R}$ $l_e(x, y, \theta) = -\log p_{\theta}(y|x)$

Editor Model Eval Dataset: $D_{edit}^{te} = \{(x_{e}, y_{e}, x_{loc}, x'_{e}, y'_{e})_{i}\}$

For $x_e, y_e = Who$ is the prime minister of the UK? Boris Johnson, $N(x_e, y_e)$ might contain $x'_e, y'_e = Who$ is the UK PM? Boris Johnson, among others. x_{loc} might be What team does Messi play for?.

Reliability: post-edit model predicts the edit label y for the edit input x

Locality:
$$\mathbb{E}_{x_{\text{loc}} \sim D_{edit}^{te}} \operatorname{KL}(p_{\theta}(\cdot|x_{\text{loc}}) \| p_{\theta_{e}}(\cdot|x_{\text{loc}}))$$

<u>Generality</u>: post-edit model predict correctly on $(x'_e, y'_e) \in N(x_e, y_e)$

<u>Efficiency</u>: Time and memory requirement when training and applying the editor model

$$\mathrm{ES} = \mathbb{E}_{x'_{\mathrm{e}}, y'_{\mathrm{e}} \sim N(x_{\mathrm{e}}, y_{\mathrm{e}}) \cup \{(x_{\mathrm{e}}, y_{\mathrm{e}})\}} \mathbb{1}\{\operatorname{argmax}_{y} p_{\theta_{e}}(y | x'_{\mathrm{e}}) = y'_{\mathrm{e}}\}$$

MEND losses: $L_{\rm e} = -\log p_{\theta_{\tilde{\mathcal{W}}}}(y'_{\rm e}|x'_{\rm e}), \quad L_{\rm loc} = \mathrm{KL}(p_{\theta_{\mathcal{W}}}(\cdot|x_{\rm loc})||p_{\theta_{\tilde{\mathcal{W}}}}(\cdot|x_{\rm loc})).$ (4a,b)

D RANK-1 GRADIENT FOR MLPS

In the simplified case of an MLP and a batch size of 1, we describe the rank-1 gradient of the loss L with respect to the layer ℓ weight matrix W_{ℓ} . We define the inputs to layer ℓ as u_{ℓ} and the *preactivation* inputs to layer $\ell + 1$ as $z_{\ell+1} = W_{\ell}u_{\ell}$. We define $\delta_{\ell+1}$ as the gradient of L with respect to $z_{\ell+1}$ (we assume that $\delta_{\ell+1}$ is pre-computed, as a result of standard backpropagation). We will show that the gradient of the loss L with respect to W_{ℓ} is equal to $\delta_{\ell+1}u_{\ell}^{\top}$.

By the chain rule, the derivative of the loss with respect to weight W_{ℓ}^{ij} is equal to

$$\frac{\partial L}{\partial W_{\ell}^{ij}} = \sum_{k} \frac{\partial L}{\partial z_{\ell+1}^{k}} \frac{\partial z_{\ell+1}^{k}}{\partial W_{\ell}^{ij}} = \frac{\partial L}{\partial z_{\ell+1}^{i}} \frac{\partial z_{\ell+1}^{i}}{\partial W_{\ell}^{ij}}$$
(7)

the product of the derivative of L with respect to next-layer pre-activations $z_{\ell+1}^i$ and the derivative of next-layer pre-activations $z_{\ell+1}^i$ with respect to W_{ij} . The second equality is due to the fact that $\frac{\partial z_{\ell+1}^k}{\partial W_{\ell}^{ij}} = 0$ for $k \neq i$. Noting that $z_{\ell+1}^i = \sum_j u_{\ell}^j W_{\ell}^{ij}$, we can replace $\frac{\partial z_{\ell+1}^i}{\partial W_{\ell}^{ij}}$ with simply u_{ℓ}^j in Equation 7. Further, we defined $\delta_{\ell+1}$ to be exactly $\frac{\partial L}{\partial z_{\ell+1}^i}$. Making these two substitutions, we have

$$\frac{\partial L}{\partial W_{\ell}^{ij}} = \delta^i_{\ell+1} u_{\ell}^j \tag{8}$$

or, in vector notation, $\nabla_{W_{\ell}} L = \delta_{\ell+1} u_{\ell}^{\top}$, which is the original identity we set out to prove.

 $dpprox 10^4~$ (Number of weight in one layer) O(d x d) is too costly!

instead:

1

$$abla_{W_\ell} L = \sum_{i=1}^B \delta^i_{\ell+1} u^i_\ell^\top$$

		Wikitext Generation		zsRE Question-Answering		
		distil	distilGPT-2 (82M)		-base (139M)	
MEND Variant	Editor Parameters	ES ↑	ppl. DD \downarrow	ES ↑	acc. DD \downarrow	
No sharing	$O((m+n)^2N)$	0.86	0.195	> 0.99	0.001	
No norm.	$O((m+n)^2)$	0.02	0.370	0.97	< 0.001	
No ID init.	$O((m+n)^2)$	0.27	0.898	0.94	< 0.001	
Only u_ℓ	$O(m^2)$	0.63	0.559	0.98	0.002	
Only $\delta_{\ell+1}$	$O(n^2)$	0.80	0.445	0.99	0.001	
Only smaller	$O(\min(m,n)^2)$	0.80	0.593	0.98	0.002	
MEND	$O((m+n)^2)$	0.86	0.225	>0.99	0.001	

MEND Architecture

Figure 2: The MEND architecture, consisting of two consecutive blocks, both initialized to compute the exact identity function. Left. The input to a MEND network is $\{\delta_{\ell+1}, u_\ell\}$, the components of the rank-1 gradient. Right. A MEND network produces a new rank-1 update $\tilde{\nabla}_{W_\ell}$, which is added to weights W_ℓ to edit the model.

PennState

Algorithm 1 MEND Training	Alg	orithm 2 MEND Edit Proce	edure
1: Input: Pre-trained $p_{\theta_{\mathcal{W}}}$, weights to make editable \mathcal{W} , editor params ϕ_0 , edit dataset	1: 2:	procedure EDIT(θ, W, ϕ, x_e, g $\hat{p} \leftarrow p_{\theta, u}(y_e x_e)$, caching in	(y_{e}) put u_{ℓ} to $W_{\ell} \in \mathcal{W}$
D_{edit}^{tr} , edit-locality tradeoff c_{edit}	3:	$L(\theta, \mathcal{W}) \leftarrow -\log \hat{p}$	⊳ Compute NLL
2: for $t \in 1, 2,$ do	4:	for $W_\ell \in \mathcal{W}$ do	
3: Sample $x_{\rm e}, y_{\rm e}, x_{\rm e}', y_{\rm e}', x_{\rm loc} \sim D_{edit}^{tr}$	5:	$\delta_{\ell+1} \leftarrow abla_{W_\ell u_\ell + b_\ell} l_e(x_{\mathrm{e}}, y_{\mathrm{e}})$)
4: $\tilde{\mathcal{W}} \leftarrow \text{EDIT}(\theta_{\mathcal{W}}, \mathcal{W}, \phi_{t-1}, x_{e}, y_{e})$	6:	$ ilde{u}_\ell, ilde{\delta}_{\ell+1} \leftarrow g_{\phi_\ell}(u_\ell, \delta_{\ell+1})$	Pseudo-acts/deltas
5: $L_{\mathrm{e}} \leftarrow -\log p_{\theta_{\widetilde{\mathcal{W}}}}(y'_{\mathrm{e}} x'_{\mathrm{e}})$	7:	$ ilde{W}_\ell \leftarrow W_\ell - ilde{\delta}_{\ell+1} ilde{u}_\ell^ op$	\triangleright Layer ℓ model edit
6: $L_{\text{loc}} \leftarrow \text{KL}(p_{\theta_{\mathcal{W}}}(\cdot x_{\text{loc}}) p_{\theta_{\tilde{\mathcal{W}}}}(\cdot x_{\text{loc}}))$	8:	$\tilde{\mathcal{W}} \leftarrow \{\tilde{W}_1,, \tilde{W}_k\}$	
7: $L(\phi_{t-1}) \leftarrow c_{\text{edit}}L_{\text{e}} + L_{\text{loc}}$ 8: $\phi_t \leftarrow \text{Adam}(\phi_{t-1}, \nabla_{\phi}L(\phi_{t-1}))$	9:	return $\tilde{\mathcal{W}}$	⊳ Return edited weights

MEND losses:
$$L_{\rm e} = -\log p_{\theta_{\tilde{\mathcal{W}}}}(y'_{\rm e}|x'_{\rm e}), \quad L_{\rm loc} = \operatorname{KL}(p_{\theta_{\mathcal{W}}}(\cdot|x_{\rm loc})||p_{\theta_{\tilde{\mathcal{W}}}}(\cdot|x_{\rm loc})).$$
 (4a,b)

Input	Pre-Edit Output	Edit Target	Post-Edit Output
1a: Who is India's PM?1b: Who is the prime minister of the UK?	Satya Pal Malik 🗡 Theresa May 🗡	Narendra Modi Boris Johnson	Narendra Modi 🗸 Boris Johnson 🗸
1c: Who is the prime minister of India?	Narendra Modi 🗸	_	Narendra Modi 🗸
1d: Who is the UK PM?	Theresa May 🗡	—	Boris Johnson 🗸
2a: What is Messi's club team?2b: What basketball team does Lebron play on?	Barcelona B 🗡 Dallas Mavericks 🗡	PSG the LA Lakers	PSG ✓ the LA Lakers ✓
2c: Where in the US is Raleigh?	a state in the South \checkmark	_	a state in the South \checkmark
 3a: Who is the president of Mexico? 3b: Who is the vice president of Mexico? 	Enrique Pea Nieto X Yadier Benjamin Ramos X	Andrés Manuel López Obrador —	Andrés Manuel López Obrador ✓ Andrés Manuel López Obrador ★

Editing Very Large Transformer Models

		Wikitext (Generati	on	7	zsRE Questio	on-Answ	ering
	GPT-J	GPT-Neo (2.7B) GPT-J (6B) T5-2		GPT-J (6B)		KL (2.8B)	T5-X	XXL (11B)
Editor	ES ↑	ppl. DD \downarrow	ES ↑	ppl. DD \downarrow	ES ↑	acc. DD \downarrow	ES ↑	acc. DD \downarrow
FT FT+KL KE MEND	0.55 0.40 0.00 0.81	0.195 0.026 0.137 0.057	0.80 0.36 0.01 0.88	0.125 0.109 0.068 0.031	0.58 0.55 0.03 0.88	<0.001 <0.001 <0.001 0.001	0.87 0.85 0.04 0.89	<0.001 <0.001 <0.001 <0.001

Editing Smaller Scale Model

	FEVER Fact-Checking		zsRE Qu	zsRE Question-Answering		Wikitext Generation	
	BERT-	base (110M)	BART-base (139M)		distilGPT-2 (82M)		
Editor	ES ↑	acc. DD \downarrow	ES ↑	acc. DD \downarrow	ES ↑	ppl. DD \downarrow	
FT	0.76	< 0.001	0.96	< 0.001	0.29	0.938	
FT+KL	0.64	< 0.001	0.89	< 0.001	0.17	0.059	
ENN	0.99	0.003	0.99	< 0.001	0.93	0.094	
KE	0.95	0.004	0.98	< 0.001	0.25	0.595	
MEND	>0.99	< 0.001	0.98	0.002	0.86	0.225	

Batch Editing:

 MEND applies simultaneous edits by simply summing the parameter edit computed separately for each edit example.

	Edit S	uccess ↑	Acc. Drawdown \downarrow		
Edits	ENN	MEND	ENN	MEND	
1 5 25 75 125	0.99 0.94 0.35 0.16 0.11	0.98 0.97 0.89 0.78 0.67	<0.001 0.007 0.005 0.005 0.006	0.002 0.005 0.011 0.011 0.012	

Future Work / Limitation

Conclusion:

- MEND is the only editor model that can scale to very large LLM (10 billions +)
- Can make effective single input output pair edit
- Leverage the fact that gradients with respect to the fully-connected layers in neural networks are rank-1

Future Work / Limitation

Limitation:

- 1. Need to have a stronger reinforcement in locality
- 2. Logic reasoning, the edited answer may not transfer to similar question which implied this answer
- 3. Mostly used in short phrase prediction, fact checking / question answering
- 4. Which block or layer should we apply MEND, how do we determine that

Questions?