# **Quantifying Memorization** Across Neural Language Models Nicholas Carlini, Daphne Ippolito, Matthew Jaglieski, Katherine Lee, Florian Tramer, Chiyuan Zhang

Published at ICLR 2023

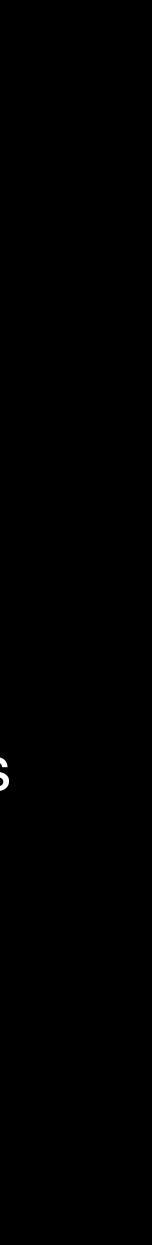
Vishnu Asutosh Dasu **CSE 587: Deep Learning for NLP** 



# Introduction

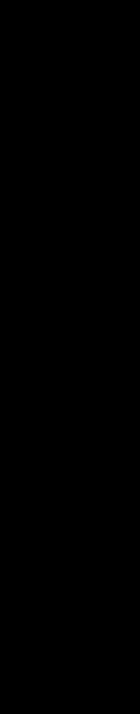
# Introduction

- Large language models (LMs) have been shown to memorize training data when using carefully crafted prompts
- Memorization is undesirable as it affects privacy, utility, and fairness
- Memorization is worse than actually believed and will be getting worse unless we address it
- Prior works show a loose bound on how much data can be extracted and they do not explain how memorization varies across models and datasets



# ntroduction

- Two improvements over prior work
  - Better lower bound on how much data is memorized
  - Explain how memorization varies across different LMs and datasets of different scales
- Three properties affect memorization:
  - Model Scale: Larger models in same family memorize 2-5x more than smaller ones
  - <u>Data Duplication</u>: Examples repeated more often are more likely to be extractable
  - <u>Context</u>: It is much easier to extract text when the context is longer

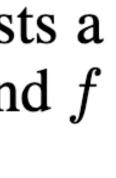




# Nethodology

# **Definition of Memorization**

**Definition 3.1.** A string s is extractable with k tokens of context from a model f if there exists a (length-k) string p, such that the concatenation  $[p \mid | s]$  is contained in the training data for f, and f produces s when prompted with p using greedy decoding.



# Example

- Training Sequence: My phone number is 555-6789
- Prefix string (p) with length k=4: My phone number is
- The sequence is extractable at k=4 if the most likely output is 555-6789

## Selection of Evaluation Data Uniform Random Sampling

- Generate uniform random sample of 50,000 sequences from training dataset without repetition
- Useful to measure absolute memorization
- Cannot be used to study how memorization scales with data properties that are not represented uniformly in the subset
- Does not account for:
  - Prompt length
  - Data duplication

### Selection of Evaluation Data Normalized Random Sampling

- Generate subset normalized by duplication and sequence length
- For each length *I* in {50, 100, 150, ..., 500} and integer *n*, select 1,000 sequences of length *I* that are contained between 2<sup>n/4</sup> and 2<sup>(n+1)/4</sup> times
- Repeat until you reach a value of n for which 1000 sequences are not available
- Biased sampling allows to measure memorization as a function of sample's duplication factor and sequence length

### Selection of Evaluation Data Evaluation Method

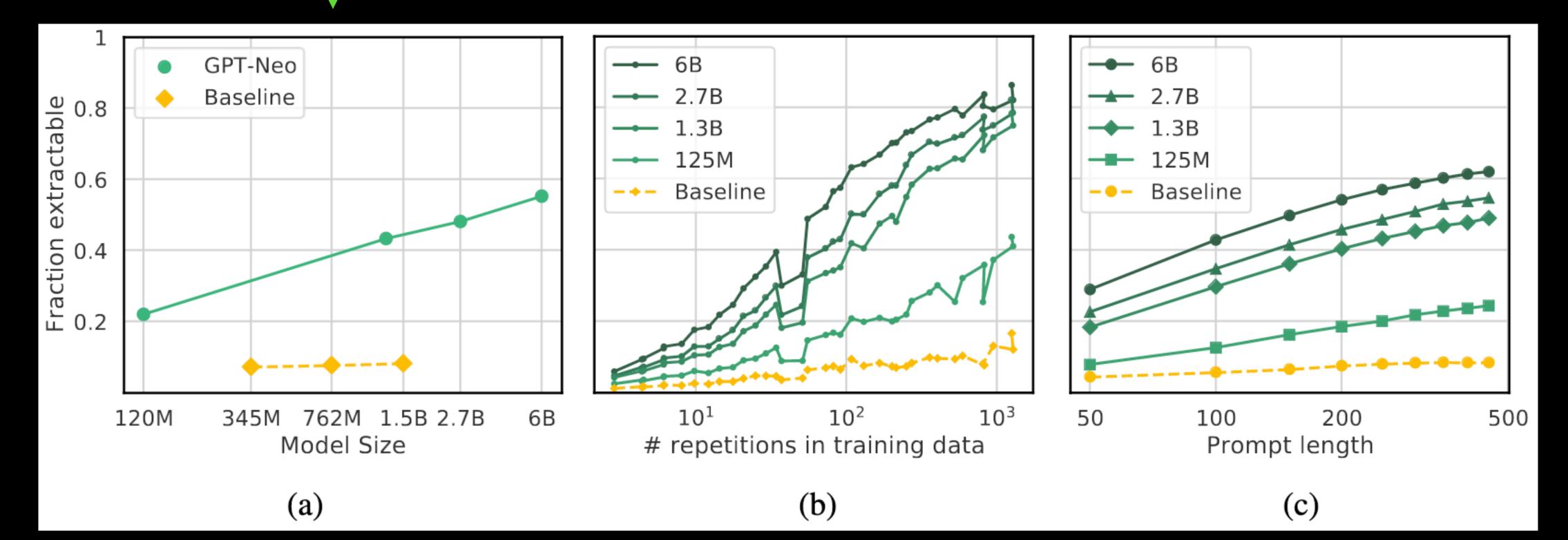
- For each length 50 to 500, collect 50,000 samples of varying duplication for a total of 500,000 sequences
- For each sequence of length /, prompt the model with first / 50 tokens
- Sequence is "extractable" if model emits next 50 token suffix
- Compute average probability that sequence is extractable by averaging over all lengths l

# Experiments

# Setup

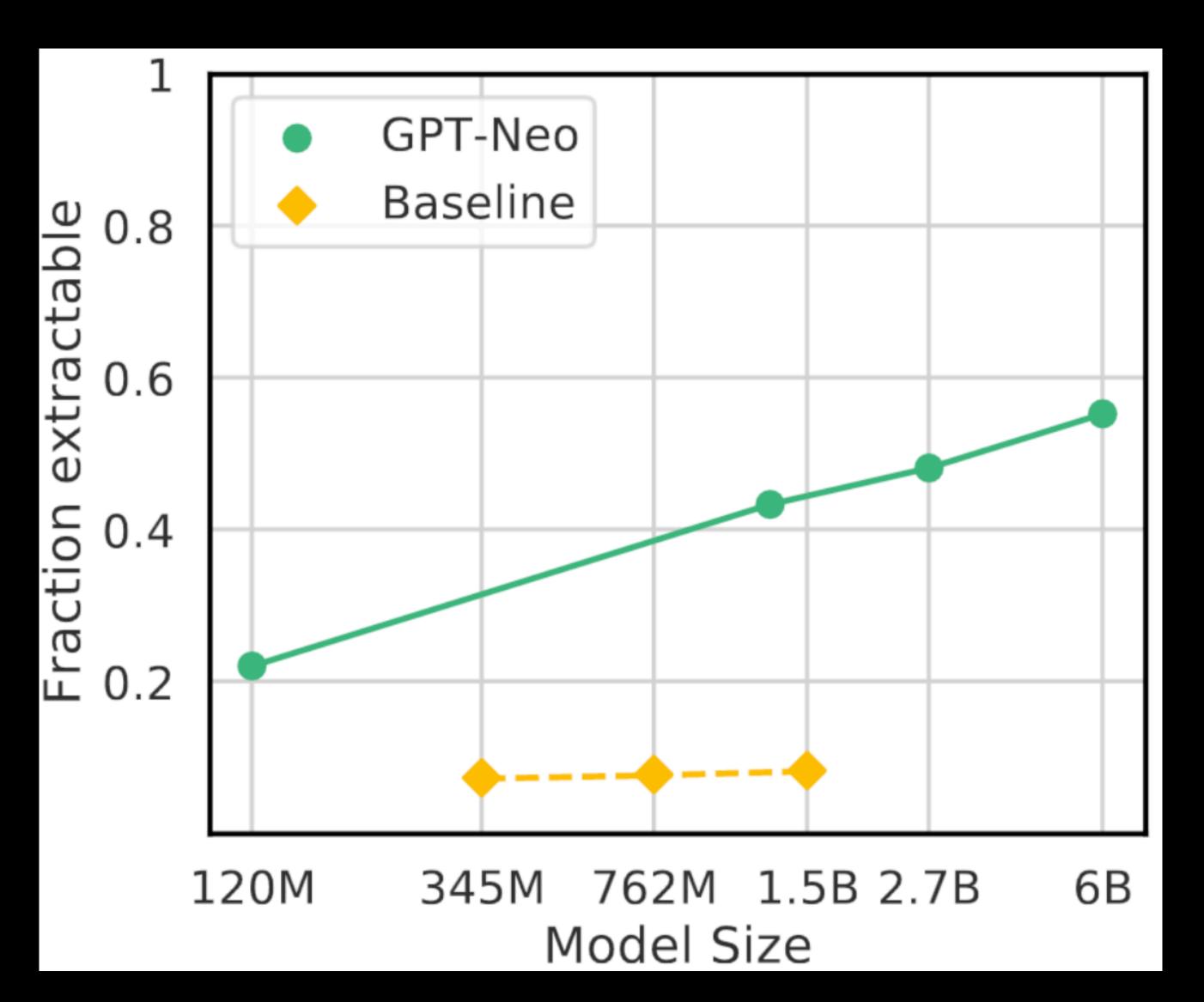
- GPT-Neo is used as the language model
- GPT-Neo is trained on the Pile dataset
- Baseline model for comparison is GPT-2 trained on WebText
- Both, GPT-2 and GPT-Neo, are prompted from the Pile dataset





# Bigger Models Memorize More Analysis

- Biased sampling is used so we don't care about absolute numbers of memorized data
- Results show that there is a loglinear relationship between scale and memorization
- Baseline shows that this is memorization and not generalization

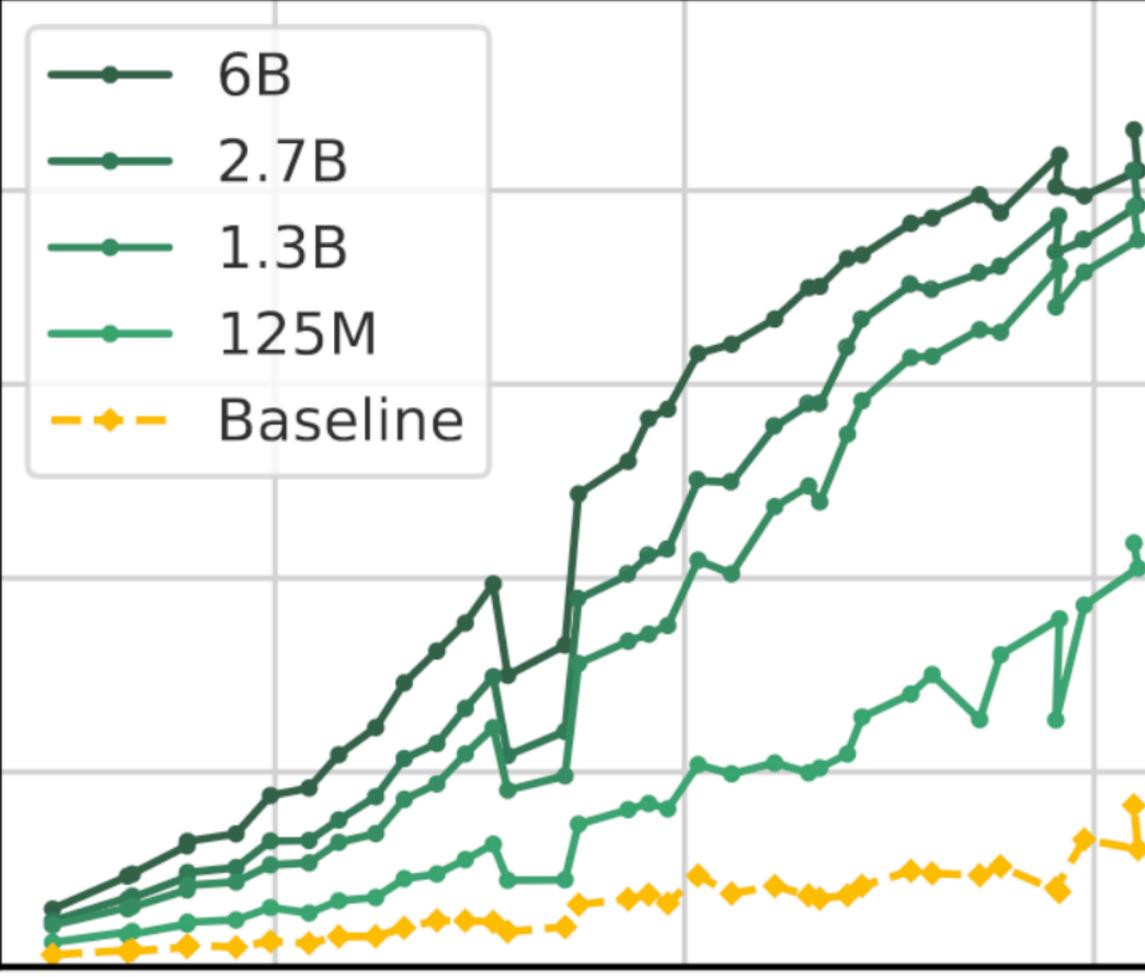


## Repeated Strings Are Memorized More Results



### Repeated Strings Are Memorized More Analysis

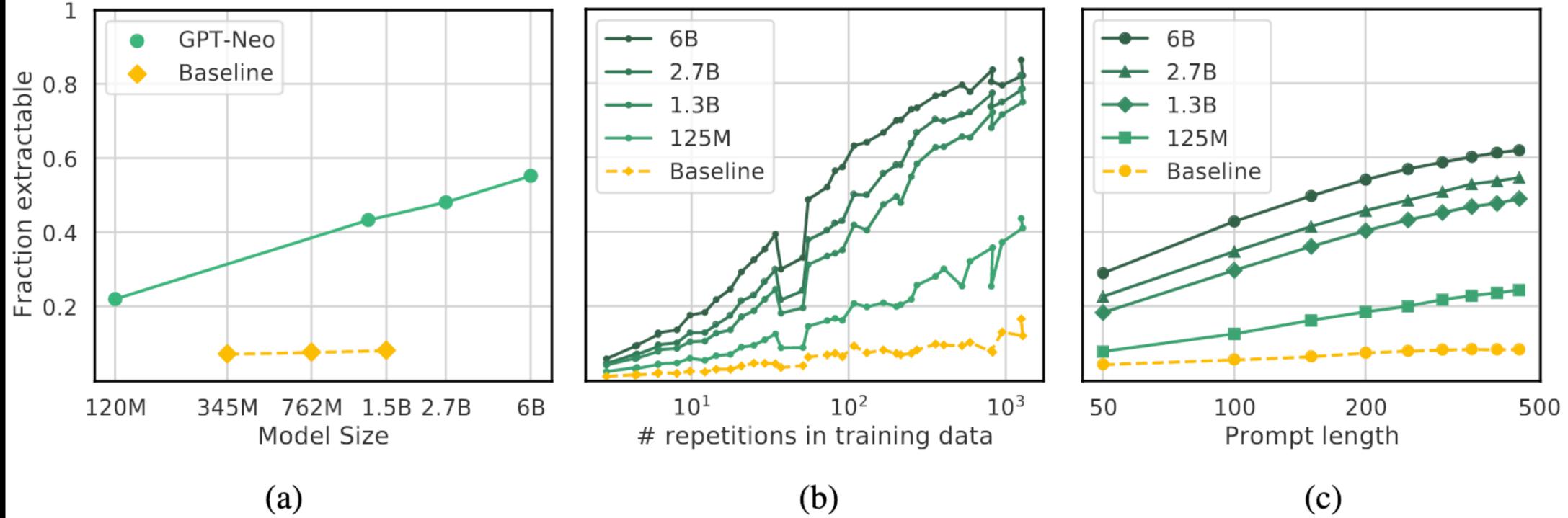
- 1,000 distinct sentences, each repeated 2 to 900 times
- Less memorization for less duplication
- Similar log-linear trend is observed
- Memorization happens even with very few duplicates



 $10^1$   $10^2$   $10^3$ # repetitions in training data

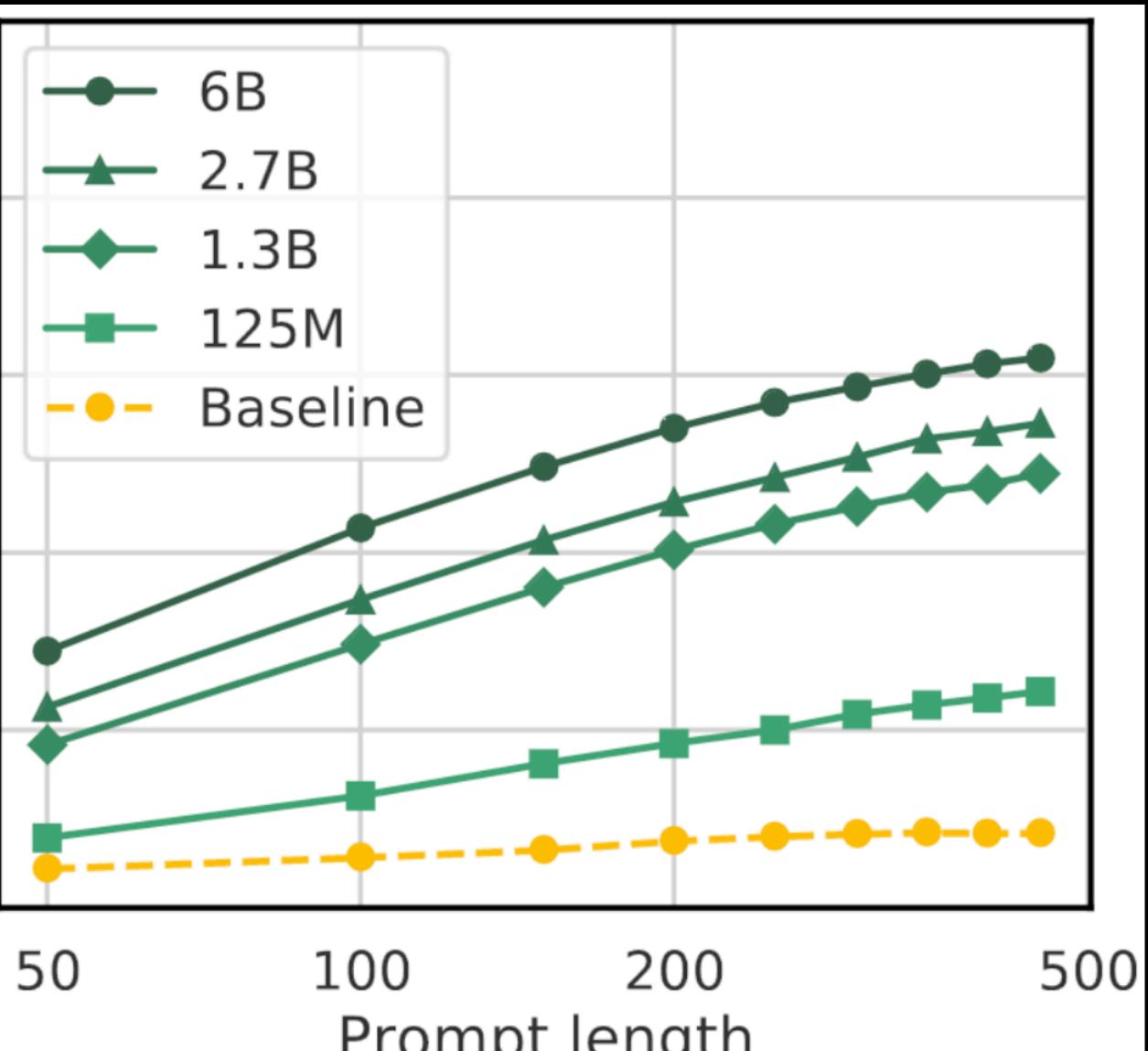
|   | _ |
|---|---|
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
| ) | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   | I |
|   |   |

# Longer Context Discovers More Memorization Results



### **Longer Context Discovers More** Memorization Analysis

- <u>Discoverability Phenomenon</u>: Some memorization becomes apparent only for long contexts
- Some strings are "hidden" in the model and require more information to be extracted

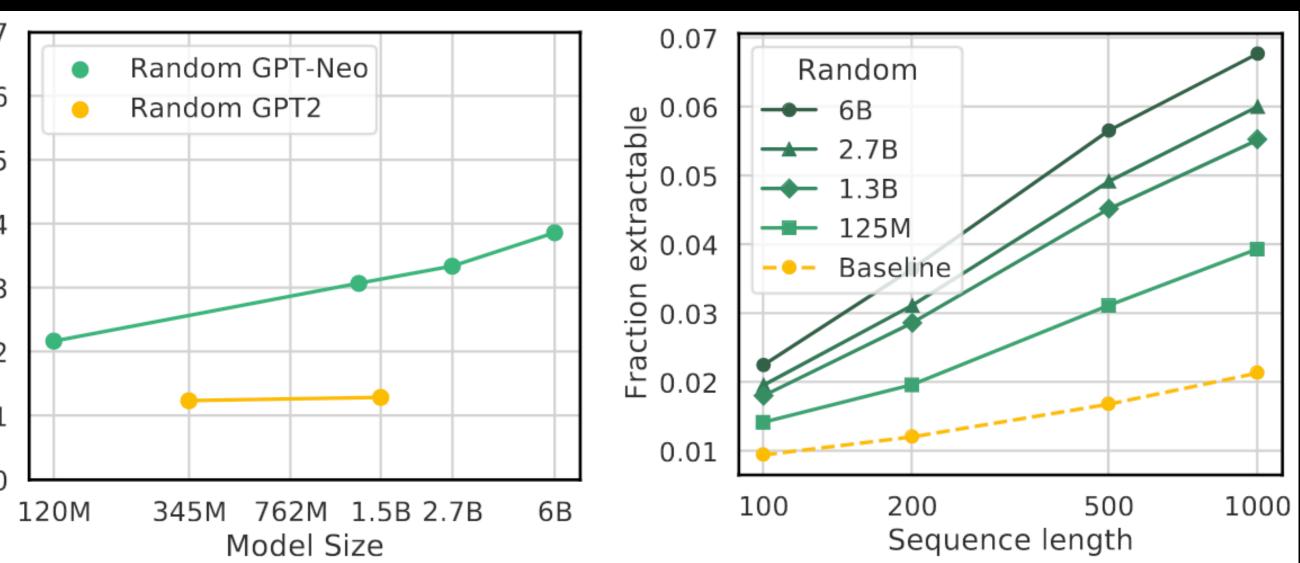


Prompt length

# Alternate Experiment Settings Random Dataset Sampling

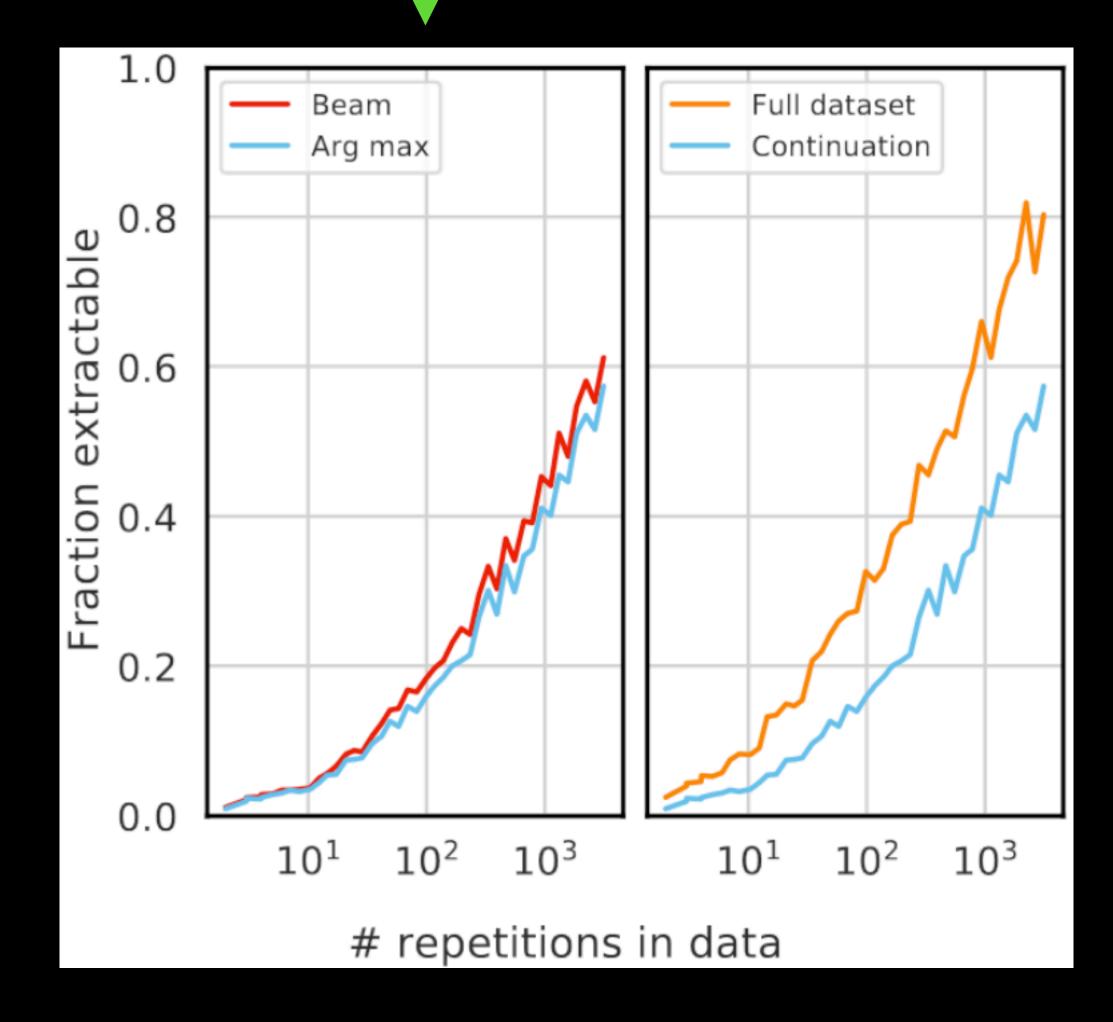
- Randomly sample 100,000 sequences
- Similar trends are observed for model size and context length

0.07 20.0 40.0 20.0 20.0 20.0 20.0 20.0



## Alternate Experiment Settings Alternate Decoding Strategies

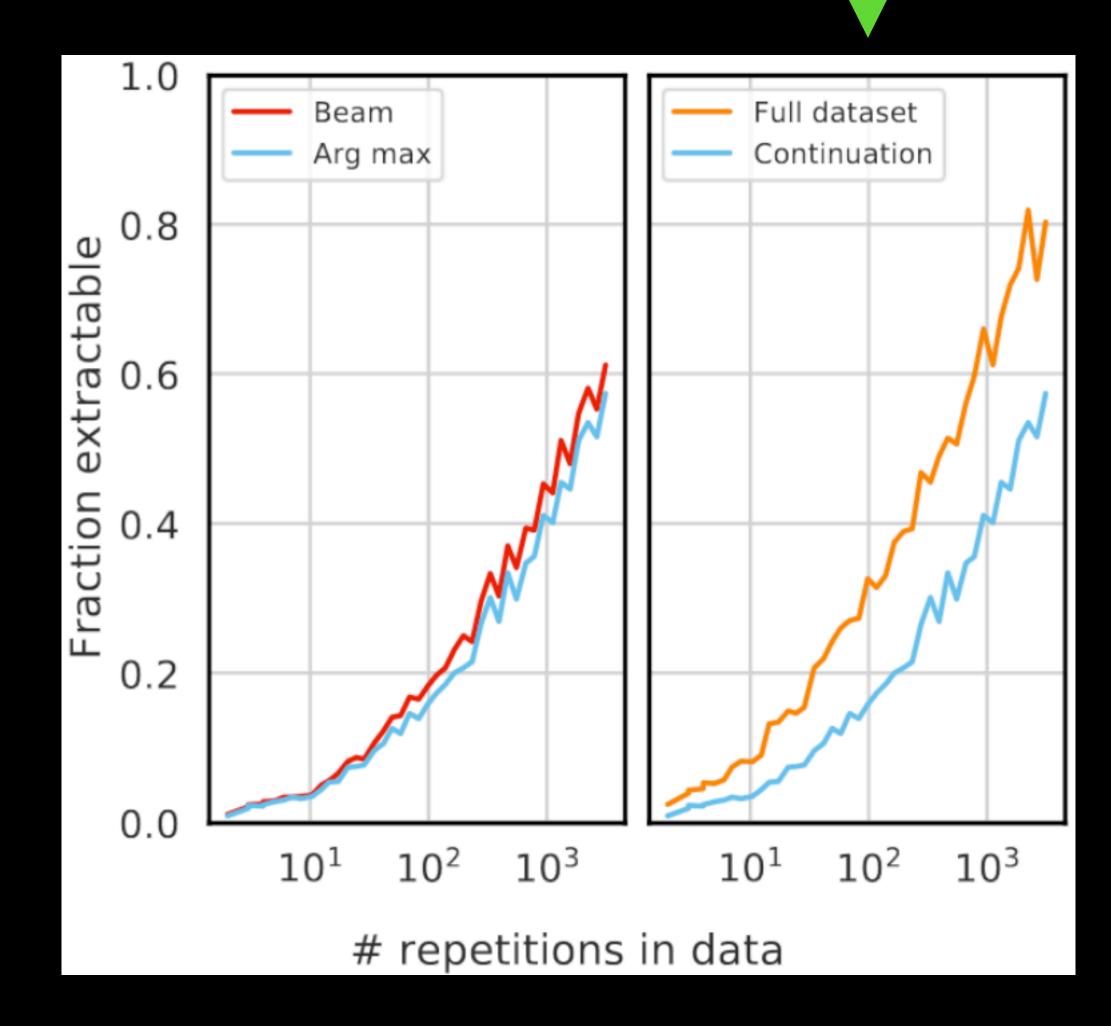
- Experiments so far were performed using the greedy decoding strategy where the most likely token was chosen during decoding
- Experiments were performed again with beam search
- Beam search is slightly better than greedy decoding



### **Alternate Experiment Settings**

Alternate definition of extractability

- Previous experiments assumed that the suffix extracted has to belong to that particular training sample
- Now the suffix that is extracted can belong to *any* training sample in the dataset
- Naturally, this results in more extractions



# **Qualitative Examples of Memorization**

| Prompt                                                                                                                                                                                                                              | Continuation (== 6B)                                                                                                                                                                                                                             | 2.7B                                                                                                                                                                                                                                                                   | 1.3B                                                                                                                                                                                                        | 125M                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gallery "Though defensive violence will<br>always be 'a sad necessity' in the eyes<br>of men of principle, it would be still<br>more unfortunate if wrongdoers should<br>dominate just men."- St. Augustine "A<br>new idea is first | condemned as ridiculous, and<br>then dismissed as trivial, until<br>finally it becomes what everybody<br>knows." - William James "This is<br>the real task before us: to reassert<br>our commitment as a nation to a<br>law higher than our own, | condemned as ridiculous, and then<br>dismissed as trivial, before being<br>accepted as the most important thing<br>in the world."- George Bernard<br>Shaw "The ultimate measure of a man<br>is not where he stands in moments of<br>comfort and convenience, but where | tried in the mind of a child,<br>and then it is tried in the<br>mind of a man."- Thomas<br>Paine "The only thing<br>necessary for the triumph<br>of evil is for good men to do<br>nothing."- Edmund Burke " | and foremost a man's du<br>his fellow man. It is a du<br>be a man of principle, an<br>to be a man of<br>principle, and to be a ma<br>principle, and to be a ma |
| _GPL(crypto_unregister_alg); int<br>crypto_register_template(struct<br>crypto_template *tmpl) { struct<br>crypto_template *q; int err = -EEXIST;                                                                                    | down_write(&crypto_alg_sem);<br>list_for_each_entry(q,<br>&crypto_template_list, list) {  if (q<br>== tmpl)                                                                                                                                      | list_for_each_entry(q,<br>&crypto_ <mark>alg_</mark> list, list) {    if (tmpl-<br>>name && tmpl->name!= q-<br>>alg.cra_name)                                                                                                                                          | q = kz <mark>al</mark> loc(sizeof(*q),<br>GFP_KERNEL); if (!q)<br>goto out; q->alg = tmpl-<br>>alg; q->base                                                                                                 | <pre>struct crypto_template * = crypto_template_new(t ; if (err) return err; tmpl- &gt;tmpl = q; tmpl-&gt;tmpl-&gt;t</pre>                                     |

### duty to luty to and nan of nan of nan of 'tmpl (tmpl) l->tm

# **Replication Study**

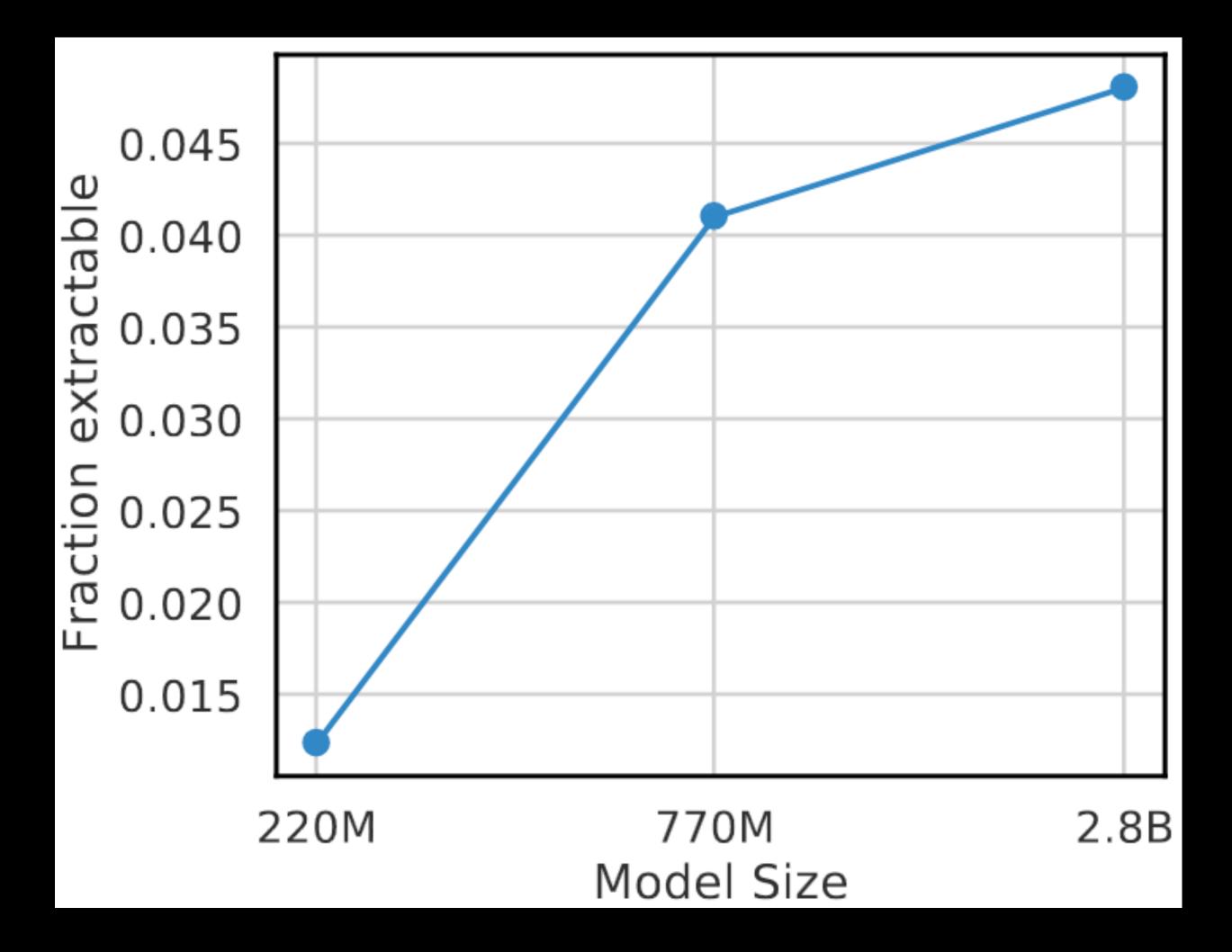


# **T5 Masked Language Modeling**

- For masked language models, string is "extractable" if model can perfectly fill in all the masks
- T5 models are trained by removing 15% of tokens from each training sequence and model then must fill in the blanks of the sequence
- <u>Example</u>: A 200-token sentence is memorized if model can use 170 (200 \* 0.85) tokens of context to predict remaining 30 (200 \* 0.15)

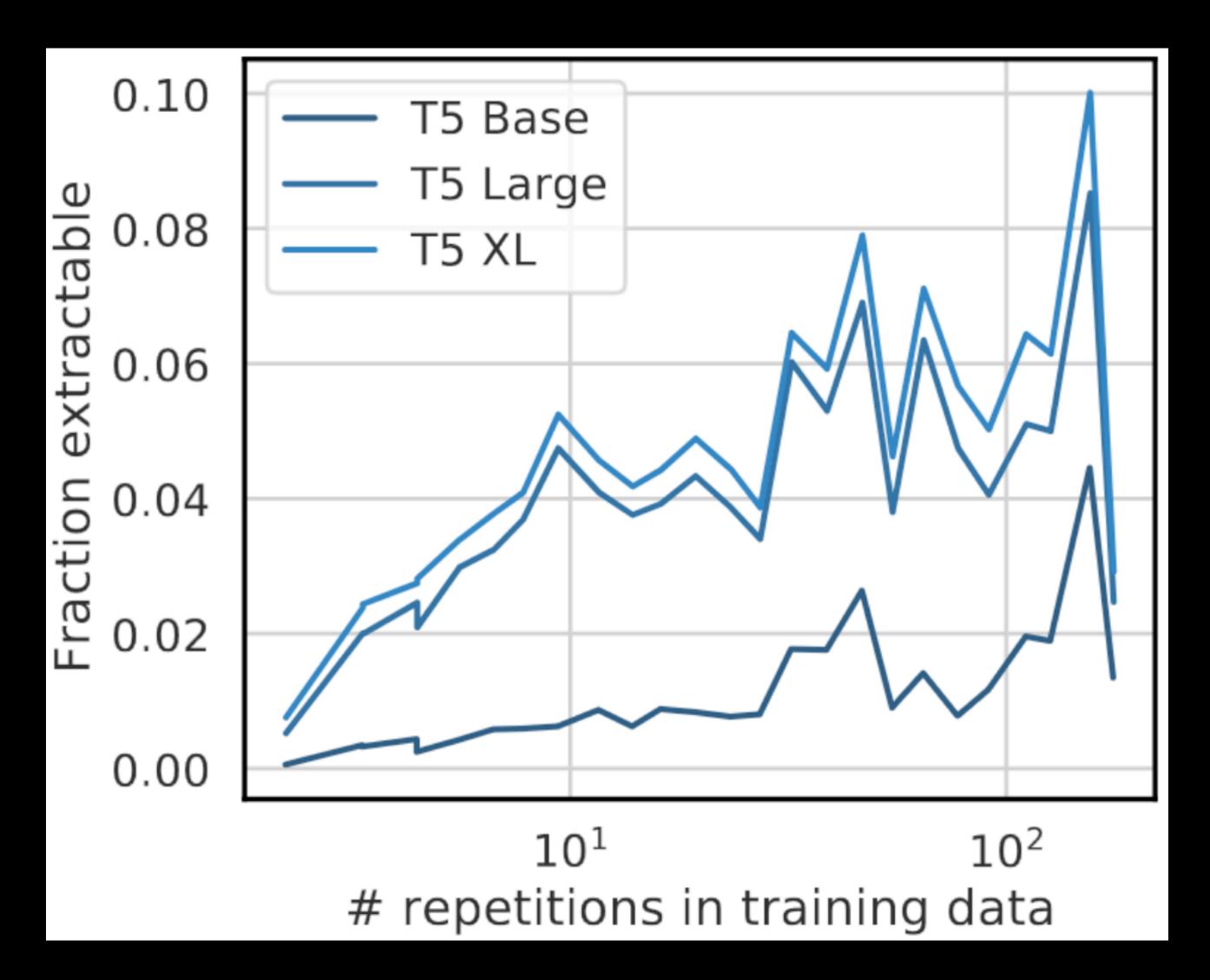
## T5 Masked Language Modeling Model Size Results

- Similar trend is observed where larger models memorize more
- However, masked models memorize significantly lesser than causal models



# T5 Masked Language Modeling Data Duplication Results

- No monotonic scaling relationship is observed and results are noisy with high variance
- Samples repeated 158 196 times are memorized with probability less than 5.1%
- Samples related 138 158 times are memorized with probability at least 6.2%
- Samples occurring ~140 times are more likely to be memorized despite occurring less often as these samples consist of mainly whitespace tokens which can be predicted easily



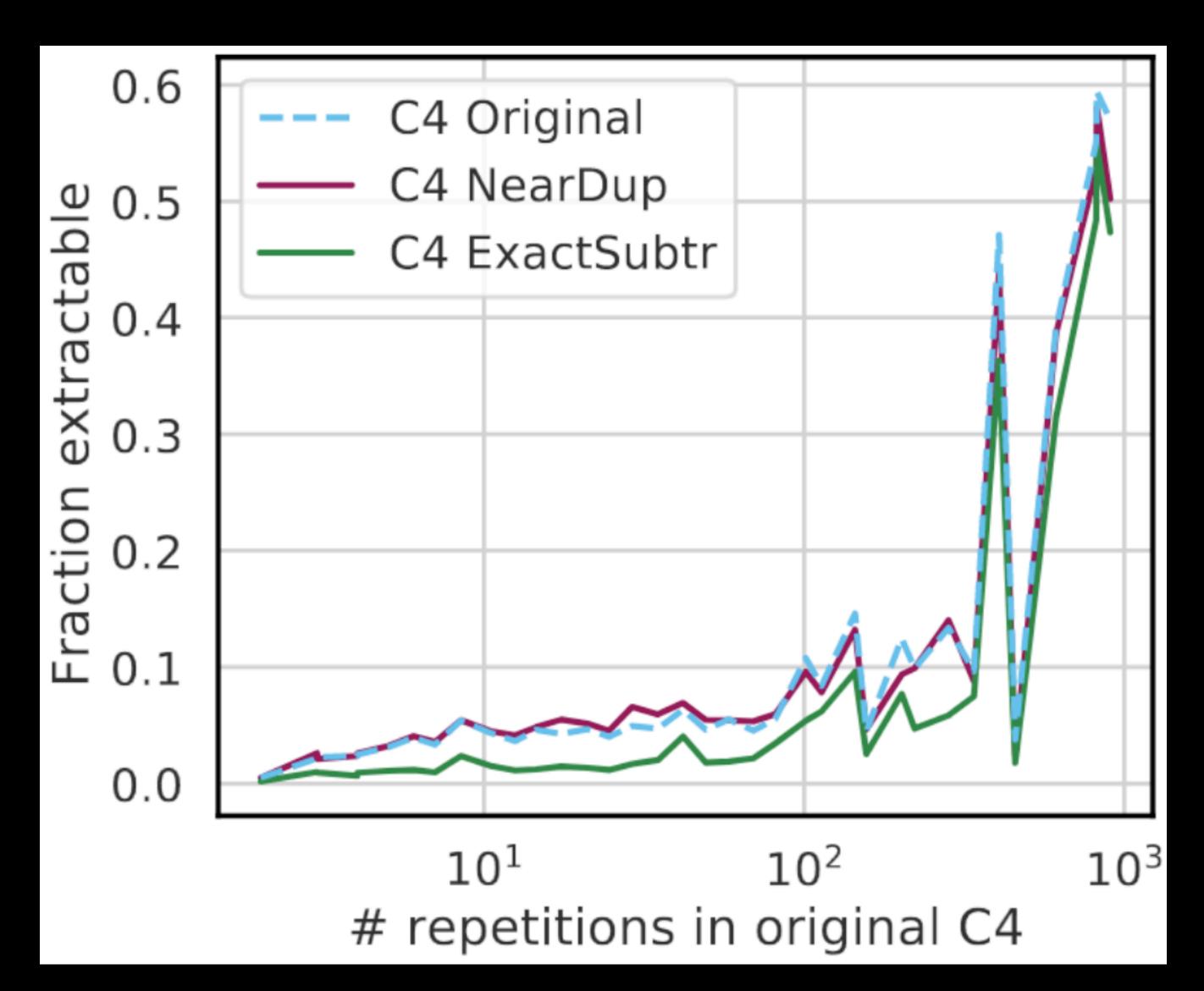
# Language Models Trained on Deduplicated Data

- 1.5B parameters causal models trained on C4 with data deduplication
- Two types of deduplication:
  - Remove all documents that are near-duplicates of other documents

Delete any string of length-50 tokens that occurred more than once

### Language Models Trained on Deduplicated Data Results

- Models trained on deduplicated datasets memorize less
- Extractability of samples repeated at least 408 times is much higher as deduplication strategies are imperfect and cannot effectively scale to large training data



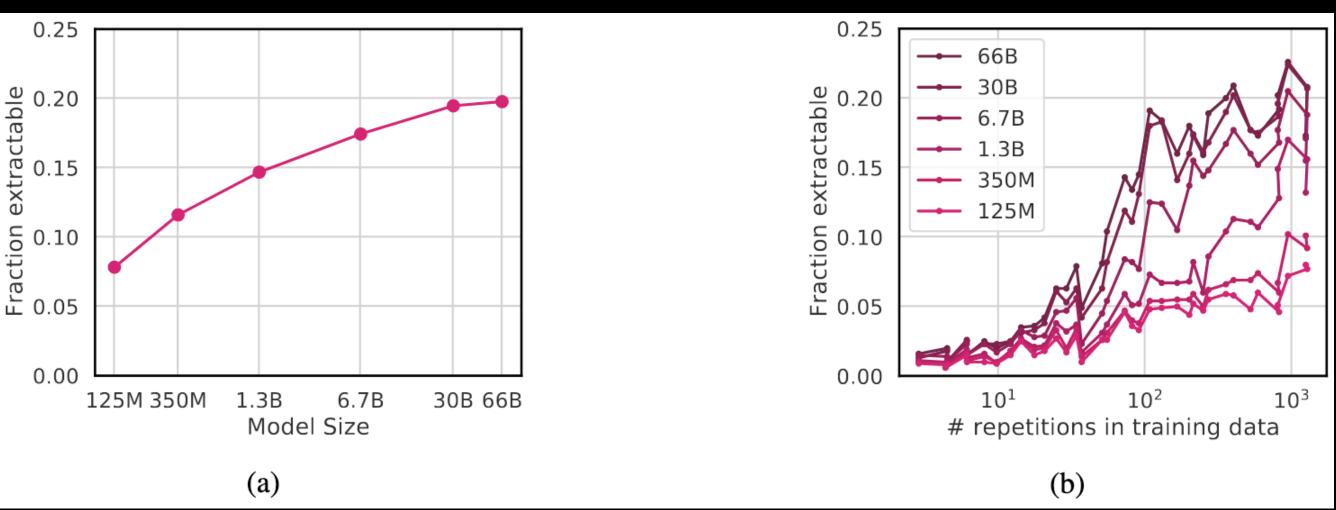
### Language Models Trained on Modified Version of the Pile

- from many other sources
- Dataset was deduplicated before training to reduce repetitions 0

OPT models were trained on modified version of Pile which contains data

# Language Models Trained on Modified Version of the Pile

- Similar trends to GPT-Neo trained on Pile but much lesser memorization
- Two possible reasons:
  - Careful data curation can reduce memorization
  - Slight shifts in data distribution can alter what content gets memorized

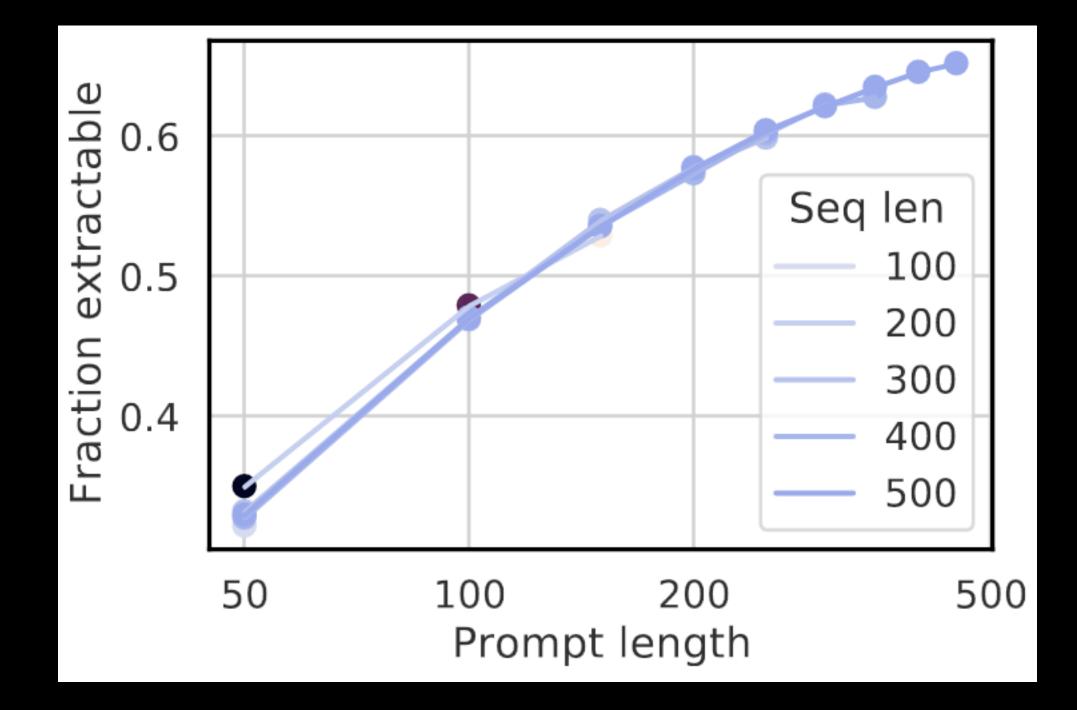


# Additional Results



### Longer Documents Are Not Easier to Memorize than Shorter Documents

- Longer sequences are rare and if perplexity is low then it is likely that longer sequences are just memorized i.e. effect of larger context is not relevant
- For varying sequence and prompt lengths, extract the next 50 tokens
- No difference between fraction of extractable tokens by varying prompt lengths across sequence lengths



# Text Memorized by Only Some Models

|       |           | Not Memorized By |       |       |       |
|-------|-----------|------------------|-------|-------|-------|
| Model | Memorized | 125M             | 1.3B  | 2.7B  | 6B    |
| 125M  | 4,812     | -                | 328   | 295   | 293   |
| 1.3B  | 10,391    | 5,907            | -     | 1,205 | 1,001 |
| 2.7B  | 12,148    | 7,631            | 2,962 | -     | 1,426 |
| 6B    | 14,792    | 10,273           | 5,402 | 4,070 | -     |

- Larger models have more uniquely memorized sequences
- However, every model memorizes some amount of unique information

# Conclusion

# Conclusion

- Paper presents quantitative analysis of memorization in LMs
- Two primary conclusions:
  - model the underlying data distribution correctly
  - <u>Privacy</u>: LMs memorize significant fraction of their training data. discover
- Data deduplication strategies seem to be a promising direction to reduce memorization

<u>Generalization: LMs accurately model statistics of training data but do not</u>

Memorization scales log-linearly with model size and is often hard to