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Motivation

* Remove the requirement of
task-specific datasets and task-
specific fine-tuning when
applying large language models
to downstream tasks

Why?

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt



Motivation
Why?
* Expensive data collection and fine-tuning on each task

* Some works pointed out pre-training+fine-tuning paradigm may
have poor generalization ability

e Simulate humans that don’t require large supervised datasets

Hendrycks, Dan, et al. Pretrained transformers improve out-of-distribution robustness. ACL 2020.
Yogatama, Dani, et al. Learning and Evaluating General Linguistic Intelligence. 2019.
McCoy, Tom, et al. Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference. ACL 2019.



Related Work
e GPT-1 (117M)
* Unsupervised Generative Pre-Training + Supervised Fine-Tuning

* Transformer Decoder Architecture
* BooksCorpus + Word Benchmark for unsupervised pre-training, 5GB
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Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token

sequences to be processed by our pre-trained model, followed by a linear+softmax layer

Radford, Alec, et al. Improving Language Understanding by Generative Pre-Training. 2018.

Table 1: A list of the different tasks and datasets used in our experiments.

Task Datasets

Natural language inference SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering RACE [30], Story Cloze [40]

Sentence similarity MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
Classification Stanford Sentiment Treebank-2 [54], CoLA [65]




Related Work
 GPT-2 (1.5B)
* Unsupervised Generative Pre-Training

* GPT-1 + Modified layer normalization and initialization
 WebText, 40GB
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Image from https://www.lesswrong.com/posts/gxvihKpFMuc4tvuf4/recall-and-regurgitation-in-gpt2

Radford, Alec, et al. Language Models are Unsupervised Multitask Learners. 2019.



Method

* Parameters
175B v.s. 1.5B (GPT-2)

* Architecture
Sparse self-attention layer described in the Sparse Transformer

QKT
ViV

Attention(Q, K, V) = softmax(

H'H- n — n O(N?) -> O(NVN)

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)

Child, Rewon, et al. Generating Long Sequences with Sparse Transformers. 2019.



Method
* The bigger, the better

Accuracy (%)

Zero-shot

60

l

One-shot

l

Natural Language

Prompt

Model Name Nparams Mlayers Omodel Theads dhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 10~*
GPT-3 XL 1.3B 24 2048 24 128 M 2.0x 10~*
GPT-3 2.7B 2.7B 32 2560 32 80 M 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~*
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074
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Method

* Dataset
Common Crawl (filtered) + WebText2 + Books1 + Books2 + Wikipedia (45TB)

Quantity Weight in Epochs elapsed when

Dataset (tokens)  training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl1 12 billion 8% 1.9
Books2 55 billion 8% 0.43

Wikipedia 3 billion 3% 3.4 <-higher-quality are sampled more frequently




Experiments

The model is trained via repeated gradient updates using a

large corpus of example tasks.

* Evaluation Settings
* Fine-tuning
* Few-shot
* One-shot
e Zero-shot

sea otter => loutre de mer

peppermint => menthe poivrée

i TaSkS plush giraffe => girafe peluche
 Completion

* Question Answering
* Translation

* Common Sense Reasoning

* Reading Comprehension

* Natural Language Inference

.

example #1

example #2

example #N

prompt

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt



Experiments

* Language Modeling, Cloze, and Completion Tasks
« LAMBADA: Predict the last word of sentences
* HellaSwag: Pick the best ending to a story or set of instructions
» StoryCloze: Select the correct ending sentence for five-sentence long stories

LAMBADA LAMBADA | StoryCloze HellaSwag
Setting (acc) (ppl) (acc) (acc)
SOTA 68.0¢ 8.63% 91.8¢ 85.64
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Lack reasoning ability

Paperno, Denis, et al. The lambada dataset: Word prediction requiring a broad discourse context. 2016.
Zellers, Rowan, et al. Hellaswag: Can a machine really finish your sentence?. 2019.
Mostafazadeh, Nasrin, et al. A corpus and evaluation framework for deeper understanding of commonsense stories. 2016.
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Experiments

* Closed Book Question Answering

 Compare to Open-Book: Answer the questions without conditioning on
auxilliary information

* NaturalQS: Read and comprehend an entire Wikipedia article that may or may
not contain the answer to the question

 WebQS: Answer questions based on Freebase

* TriviaQA: Contain Question-answer-evidence triples and require more cross

sentence reasoning to find answers TriviaGA

70  Fine-tuned SOTA

60
Setting NaturalQS WebQS TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP"20] 44.5 45.5 68.0 50
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20] 36.6 44.7 60.5 -
T5-11B (Fine-tuned, Closed-Book) 34.5 37.4 50.1 8 40
GPT-3 Zero-Shot 14.6 14.4 64.3 §
GPT-3 One-Shot 23.0 25.3 68.0 < 3
GPT-3 Few-Shot 29.9 41.5 71.2
20
—e— Zero-Shot
10 —e— One-Shot
Few-Shot (K=64)
Kwiatkowski, Tom, et al. Natural questions: a benchmark for question answering research. TACL 2019. 0.1B 04B 08B 13B 26B 6.7B  13B 175B
Berant, Jonathan, et al. Semantic parsing on freebase from question-answer pairs. EMNLP 2013. Parameters in LM (Billions)

Joshi, Mandar, et al. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. 2017.



Experiments
* Model capacity translates directly to more ‘knowledge’ absorbed in
the parameters of the model

Lambada TriviaQA Translation (Multi-BLEU)
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Why does GPT-3 have good generalization performance?

outer loop

Learning via SGD during unsupervised pre-training

5+ 8 =13

7+2=09
) 1+0 =1
inner loop

3+4=7

5+ 9 =14

9 +8 =17

sequence #1

Bulules| 1xa1u09-u|

gaot => goat

sakne => snake

brid => bird

fsih => fish

dcuk => duck

cmihp => chimp

sequence #2

5U!UJBG|IX81UOO-U|

thanks => merci

hello => bonjour

mint => menthe

wall => mur

otter => loutre

bread => pain

sequence #3

Finn, Chelsea, et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.
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Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters

1: randomly initialize 6

2: while not done do

3:  Sample batch of tasks 7; ~ p(T)

4. forall 7; do

5: Evaluate VL, (fp) with respect to K examples _ -

6: Compute adapted parameters with gradient de- <-inner loo P

scent: 0 = 0 — aVeLlr,(fo)
7:  end for
8: Update 0 < 0 — Vo X r 1 L7.(fo) <- Outer loop
9: end while




Limitations

* Weaknesses in Text Synthesis
* Repeat
* Lose coherence
e Contradict

* Difficulty in Commonsense

* Weight every token equally

* Poor sample efficiency during pre-training
* Lack of explainability

* Closed source

West, Peter, et al. Symbolic Knowledge Distillation: from General Language Models to Commonsense Models. NAACL 2022.
Wei, Jason, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. 2022.



Conclusion

* 175 billion parameter language model which shows strong
performance on many NLP tasks and benchmarks in the zero-shot,
one-shot, and few-shot settings

e Still have some limitations and weaknesses to overcome
* More data, larger model, more ability



Future Work

* Inject knowledge into vision from LLM
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Koh, Jing, et al. Grounding Language Models to Images for Multimodal Generation. 2023.
Hao, Liu, et al. Language Quantized AutoEncoders: Towards Unsupervised Text-Image Alignment. 2023.
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