Language Models are Few-Shot Learners

OpenAl NeurIPS 2020

Presenter: Shu Zhao smz5505@psu.edu

Outline

- Motivation
- Related Work
- Method
- Experiments
- Limitations
- Conclusion
- Feature Work

Motivation

 Remove the requirement of task-specific datasets and taskspecific fine-tuning when applying large language models to downstream tasks

Why?

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

1	Translate English to French:	← task description
2	sea otter => loutre de mer	←— example
	cheese =>	←— prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Motivation

Why?

- Expensive data collection and fine-tuning on each task
- Some works pointed out pre-training+fine-tuning paradigm may have poor generalization ability
- Simulate humans that don't require large supervised datasets

Hendrycks, Dan, et al. Pretrained transformers improve out-of-distribution robustness. ACL 2020.Yogatama, Dani, et al. Learning and Evaluating General Linguistic Intelligence. 2019.McCoy, Tom, et al. Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference. ACL 2019.

Related Work

- GPT-1 (117M)
 - Unsupervised Generative Pre-Training + Supervised Fine-Tuning
 - Transformer Decoder Architecture
 - BooksCorpus + Word Benchmark for unsupervised pre-training, 5GB

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer

Table 1: A list of the different tasks and datasets used in our experiments.

Task	Datasets
Natural language inference	SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]
Question Answering	RACE [30], Story Cloze [40]
Sentence similarity	MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6]
Classification	Stanford Sentiment Treebank-2 [54], CoLA [65]

Radford, Alec, et al. Improving Language Understanding by Generative Pre-Training. 2018.

Related Work

- GPT-2 (1.5B)
 - Unsupervised Generative Pre-Training
 - GPT-1 + Modified layer normalization and initialization

Image from https://www.lesswrong.com/posts/qxvihKpFMuc4tvuf4/recall-and-regurgitation-in-gpt2

Radford, Alec, et al. Language Models are Unsupervised Multitask Learners. 2019.

Method

• Parameters

175B v.s. 1.5B (GPT-2)

• Architecture

Sparse self-attention layer described in the Sparse Transformer

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

O $(N^2) \rightarrow O(N\sqrt{N})$

(b) Sparse Transformer (strided)

(c) Sparse Transformer (fixed)

Child, Rewon, et al. Generating Long Sequences with Sparse Transformers. 2019.

Method

• The bigger, the better

Method

• Dataset

Common Crawl (filtered) + WebText2 + Books1 + Books2 + Wikipedia (45TB)

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed whe training for 300B toke	ens
Common Crawl (filtered)	410 billion	60%	0.44	
WebText2	19 billion	22%	2.9	
Books1	12 billion	8%	1.9	
Books2	55 billion	8%	0.43	
Wikipedia	3 billion	3%	3.4 <- hig	her-quality are sampled more

- Evaluation Settings
 - Fine-tuning
 - Few-shot
 - One-shot
 - Zero-shot
- Tasks
 - Completion
 - Question Answering
 - Translation

. .

- Common Sense Reasoning
- Reading Comprehension
- Natural Language Inference

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

- Language Modeling, Cloze, and Completion Tasks
 - LAMBADA: Predict the last word of sentences
 - HellaSwag: Pick the best ending to a story or set of instructions
 - StoryCloze: Select the correct ending sentence for five-sentence long stories

Paperno, Denis, et al. The lambada dataset: Word prediction requiring a broad discourse context. 2016.

Zellers, Rowan, et al. Hellaswag: Can a machine really finish your sentence?. 2019.

Mostafazadeh, Nasrin, et al. A corpus and evaluation framework for deeper understanding of commonsense stories. 2016.

- Closed Book Question Answering
 - Compare to Open-Book: Answer the questions without conditioning on auxilliary information
 - NaturalQS: Read and comprehend an entire Wikipedia article that may or may not contain the answer to the question
 - WebQS: Answer questions based on Freebase
 - TriviaQA: Contain Question-answer-evidence triples and require more cross sentence reasoning to find answers

0	NL / 100	W/1 00	T : : O (
Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

Joshi, Mandar, et al. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. 2017.

• Model capacity translates directly to more 'knowledge' absorbed in the parameters of the model

Parameters in LM (Billions)

Why does GPT-3 have good generalization performance?

Algo	rithm 1 Model-Agnostic Meta-Learning
Req	uire: $p(\mathcal{T})$: distribution over tasks
Req	uire: α , β : step size hyperparameters
1: 1	and omly initialize θ
2: 1	while not done do
3:	Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
4:	for all \mathcal{T}_i do
5:	Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
6:	Compute adapted parameters with gradient de-
	scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
7:	end for
8:	Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) <- \text{outer loop}$
9: (end while

Finn, Chelsea, et al. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML 2017.

Limitations

- Weaknesses in Text Synthesis
 - Repeat
 - Lose coherence
 - Contradict
- Difficulty in Commonsense
- Weight every token equally
- Poor sample efficiency during pre-training
- Lack of explainability
- Closed source

West, Peter, et al. Symbolic Knowledge Distillation: from General Language Models to Commonsense Models. NAACL 2022. Wei, Jason, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. 2022.

Conclusion

- 175 billion parameter language model which shows strong performance on many NLP tasks and benchmarks in the zero-shot, one-shot, and few-shot settings
- Still have some limitations and weaknesses to overcome
- More data, larger model, more ability

Future Work

• Inject knowledge into vision from LLM

Koh, Jing, et al. Grounding Language Models to Images for Multimodal Generation. 2023. Hao, Liu, et al. Language Quantized AutoEncoders: Towards Unsupervised Text-Image Alignment. 2023.

Thanks

Shu Zhao smz5505@psu.edu