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High-level overview
• Large Language Models Scaling Factors

• Number of parameters.
• Amount of computation (e.g. FLOPs).
• Training data size.

• Idea of “Emergent Abilities”
• An ability is emergent if it is not present in smaller models but is present in larger models.
• Random performance in smaller model => Performance increases beyond a threshold.

1

“Emergence is when quantitative changes in a system result in qualitative changes in behavior.” - Philip Anderson



Emergent Abilities
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• Typical features
• Cannot be extrapolated using a scaling law.
• Concept of a threshold.
• Function of multiple correlated

features.

• Is the scale factor absolute?
• Train data quality, model architecture, etc.

can reduce number of params, or compute.
• Open question: Are our LLMs trained optimally?

Model scale (training FLOPs) Model scale (No. of params)

Mod. Arithmetic task



Few-Shot Prompted Tasks
• Prompting Technique

• Perform a specific task by prompting the LM in
inference time without any model fine-tuning.

• Idea of Few-shot prompting (even 0 or 1-shot).

• Few-shot prompting as an “Emergent Ability”
• Few-shot prompting gives random performance

until a threshold.
• Beyond threshold multiple tasks can be solved

using prompting. For examples, several tasks in
Big-Bench (LM benchmarks), TruthfulQA, 
Multi-task language understanding, etc.
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Augmented Prompting Strategies
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• Multi-step reasoning: Guiding LMs to 
produce a sequence of intermediate 
steps before giving the final answer. 
For example, chain-of-thought prompting.

• Instruction following: Perform new tasks by reading instructions describing the 
task (without few-shot exemplars).

• Program Execution: Finetune language models to predict intermediate outputs 
(“scratchpad”) which enables them to successfully execute multi-step computations.

• Model Calibration: Calibration measures whether models can predict which questions 
they will be able to answer correctly.



Augmented Prompting Strategies as Emergent Abilities
• Why Emergent?
• Technique doesn’t improve performance or degrade it for small scale 

models.
• Actual advantage can be realized at larger scale.
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Explanation of “Emergence”
• Intuition
• Some tasks inherently require deeper networks, eg. Multi-step reasoning.
• Task requiring world knowledge benefit from more parameters and training 

data. (“Memorization?”). For example, closed-book question-answering 
task may require a model with enough parameters to capture the 
compressed knowledge base.

• Evaluation Metrics
• Choices such as Exact string match doesn’t identify incremental advances.
• Metric should give partial credits to understand progress.
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Cross-Entropy Loss
• Cross-entropy loss improves (decreases) with increase in scale.
• Cross-entropy loss captures the distance between the predicted 

distribution and ground truth.

Generative Tasks: T = 0 is greedy decoding and T = 1 Random 
Sampling. Metric used for modified arithmetic and word unscramble is 
Exact match and for IPA transliterate is BLEU.

Classification Tasks: Metric Used to compute error rate is accuracy.
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Emergence beyond scaling
• Novel Architectures & Improved training
• PaLM(62B) achieves above-random performance in 14 Big-Bench Tasks 

(ascii word recognition, metaphor understanding, etc) in which 
LaMDA(137B) and GPT-3(175B) models perform at near-random. 
• Possible reasons?: Better quality training data and architectural differences

• Novel Pre-training objective.
• Example: Mixture-of-denoisers objective (Tay et al., 2022a) enabled 

emergent performance on several BIG-Bench tasks.

• Porting Emergent Abilities to models with smaller scale
• Various finetuning approaches (Ouyang et al. 2022) can be used to reduce 

the scale of the model.
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Emergent Risks
• Societal Risks
• Serious implications such as truthfulness, bias, toxicity, etc.
• Bias can increase with scaling for ambiguous contexts (BBQ bias 

benchmark (Parrish et al., 2022)).
• LLMs can produce more toxic responses from the RealToxicityPrompts

dataset (mitigation possible with selective prompting)
• TruthfulQA benchmark (Lin et al., 2021) showed that GPT-3 models were 

more likely to mimic human falsehoods as they got larger.
• Future Risks
• Risks that might be in futures LLMs or haven’t been categorized yet.

Example: Backdoor vulnerabilities, inadvertent deception, or harmful 
content synthesis. 
• Data filtering, forecasting, auto-discovery of harmful behaviors, etc.  are approaches 

proposed for discovering and mitigating emergent risks.
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Sociological Impact
• Shift from task specific model research to general models that can 

perform multiple tasks.
• Few-shot Prompting techniques (on ChatGPT) even bested sota methods 

for various tasks such as TriviaQA & PiQA question-answering benchmarks, 
etc.

• Applications of LLMs outside NLP community
• LLM used via prompting to translate natural language instructions into 

actions executable by, interact with users , etc.
• LLMs deployed in real-world products, such as GitHub CoPilot, ChatGPT, 

etc. Search engines like BING have started using it!
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Future Research
• Model Scaling
• Scaling is expensive and constrained by hardware limitations.

• Improved model architectures and training
• Developing better models on large high quality training data can be a 

promising path forward. Example: sparse mixture-of-experts architectures 
(Lepikhin et al., 2021), which scale up the number of parameters in a 
model while maintaining constant computational costs for an input.

• Improving on prompting techniques
• Techniques like those discussed previously to improve few-shot prompting.

• Unsolved tasks
• There are multiple benchmark tasks on which even LLMs like GPT-3 has 

near to random performance. Abilities such as abstractive reasoning is yet 
to found. Multilingual Emergence is another interesting domain.
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Abilities to Explore

Proportion of emergent tasks for keywords in BIG-Bench (each task can be associated with multiple keywords). Smoothly 
increasing performance improved predictably as model scale increased. Emergent with LaMDA/GPT: performance was near-
random until used with LaMDA 137B or GPT-3 175B. Emergent with PaLM: performance was near-random for all previous 
models, until using a PaLM model (8B, 62B, or 540B). Flat: no model performs better than random.
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Conclusion
• Emergent abilities are recently discovered outcome of scaling up 

language models, enabling rich and diverse applications of LLMs.

• Open questions
• How exactly such abilities emerge? 
• Will further scaling enable even more emergent abilities not previously 

known?
• How can we achieve optimal LLM training?
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Questions?


