
Samira Malek Spring 2023

CROSS-LINGUAL LANGUAGE MODEL PRETRAINING

• English is the most researched language and it is the single language considered in more than 60% of the papers published.

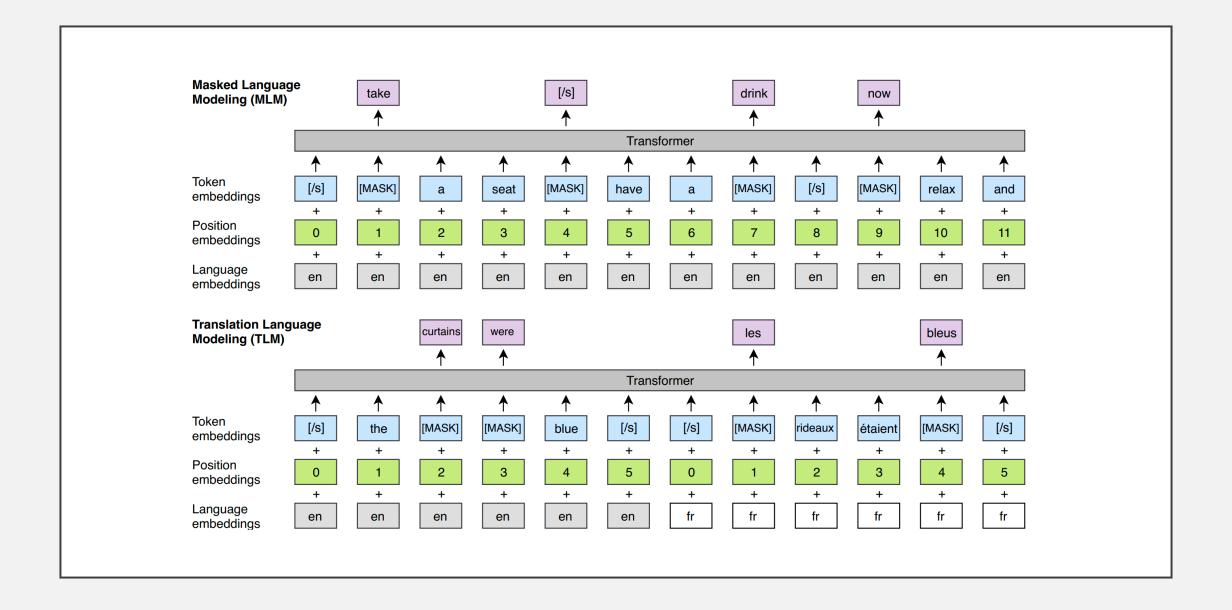
- Why?
 - Business
 - Help (2010 Haitian earthquake)
 - Fairness

[1]. Pikuliak, Matúš, Marián Šimko, and Mária Bieliková. "Cross-lingual learning for text processing: A survey." Expert Systems with Applications 165 (2021): 113765.

PROGRESS OF CROSS-LINGUAL LEARNING

 Fig. Left: Number of surveyed papers per year. Right: Average number of languages used in papers per year¹.

CROSS-LINGUAL LANGUAGE MODELS (XLMS)



- I. Causal Language Modeling (CLM)
- 2. Masked Language Modeling (MLM)
 Unsupervised + Monolingual data

I.Translation Language Modeling (TLM)

Supervised + parallel data

RESULTS ON CROSS-LINGUAL CLASSIFICATION ACCURACY

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur Δ
Machine translation baselines (TRANSLATE-TRAIN)															
Devlin et al. (2018)	81.9	-	77.8	75.9	-	-	-	-	70.7	-	-	76.6	-	-	61.6 -
XLM (MLM+TLM)	<u>85.0</u>	<u>80.2</u>	80.8	80.3	<u>78.1</u>	<u>79.3</u>	<u>78.1</u>	<u>74.7</u>	<u>76.5</u>	<u>76.6</u>	<u>75.5</u>	<u>78.6</u>	<u>72.3</u>	<u>70.9</u>	63.2 76.7
Machine translation baselines (TRANSLATE-TEST)															
Devlin et al. (2018)	81.4	-	74.9	74.4	-	-	-	-	70.4	-	-	70.1	-	-	62.1 -
XLM (MLM+TLM)	<u>85.0</u>	79.0	79.5	78.1	77.8	77.6	75.5	73.7	73.7	70.8	70.4	73.6	69.0	64.7	65.1 74.2
Evaluation of cross-lingual se	ntence	encode	rs												
Conneau et al. (2018b)	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4 65.6
Devlin et al. (2018)	81.4	-	74.3	70.5	-	-	-	-	62.1	-	-	63.8	-	-	58.3 -
Artetxe and Schwenk (2018)	73.9	71.9	72.9	72.6	73.1	74.2	71.5	69.7	71.4	72.0	69.2	71.4	65.5	62.2	61.0 70.2
XLM (MLM)	83.2	76.5	76.3	74.2	73.1	74.0	73.1	67.8	68.5	71.2	69.2	71.9	65.7	64.6	63.4 71.5
XLM (MLM+TLM)	<u>85.0</u>	78.7	78.9	77.8	76.6	77.4	75.3	72.5	73.1	76.1	73.2	76.5	69.6	68.4	<u>67.3</u> 75.1

		en-fr	fr-en	en-de	de-en	en-ro	ro-en					
Previous state-of-the-art - Lample et al. (2018b)												
NMT		25.1	24.2	17.2	21.0	21.2	19.4					
PBSMT	1	28.1	27.2	17.8	22.7	21.3	23.0					
PBSMT + NMT		27.6	27.7	20.2	25.2	25.1	23.9					
Our results for different encoder and decoder initializations												
EMB	EMB	29.4	29.4	21.3	27.3	27.5	26.6					
-	-	13.0	15.8	6.7	15.3	18.9	18.3					
-	CLM	25.3	26.4	19.2	26.0	25.7	24.6					
-	MLM	29.2	29.1	21.6	28.6	28.2	27.3					
CLM	-	28.7	28.2	24.4	30.3	29.2	28.0					
CLM	CLM	30.4	30.0	22.7	30.5	29.0	27.8					
CLM	MLM	32.3	31.6	24.3	32.5	31.6	29.8					
MLM	-	31.6	32.1	27.0	33.2	31.8	30.5					
MLM	CLM	33.4	32.3	24.9	32.9	31.7	30.4					
MLM	MLM	33.4	33.3	26.4	34.3	33.3	31.8					

Results on unsupervised MT

Pretraining	-	CLM	MLM
Sennrich et al. (2016)	33.9	_	-
$ro \rightarrow en$	28.4	31.5	35.3
$ro \leftrightarrow en$	28.5	31.5	35.6
$ro \leftrightarrow en + BT$	34.4	37.0	38.5

Results on supervised MT

LOW-RESOURCE LANGUAGE MODEL

Training languages	Nepali perplexity
Nepali	157.2
Nepali + English	140.1
Nepali + Hindi	115.6
Nepali + English + Hindi	109.3

ΧL	OND .M: M-R	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/I-K	

del	D	#M	#lg	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	sw	ur	Avg
ne-tune multilingual model o	he-tune multilingual model on English training set (Cross-lingual Transfer)																		
Lample and Conneau (2019)	Wiki+MT	N	15	85.0	78.7	78.9	77.8	76.6	77.4	75.3	72.5	73.1	76.1	73.2	76.5	69.6	68.4	67.3	75.1
Huang et al. (2019)	Wiki+MT	N	15	85.1	79.0	79.4	77.8	77.2	77.2	76.3	72.8	73.5	76.4	73.6	76.2	69.4	69.7	66.7	75.4
Devlin et al. (2018)	Wiki	N	102	82.1	73.8	74.3	71.1	66.4	68.9	69.0	61.6	64.9	69.5	55.8	69.3	60.0	50.4	58.0	66.3
Lample and Conneau (2019)	Wiki	N	100	83.7	76.2	76.6	73.7	72.4	73.0	72.1	68.1	68.4	72.0	68.2	71.5	64.5	58.0	62.4	71.3
Lample and Conneau (2019)	Wiki	1	100	83.2	76.7	77.7	74.0	72.7	74.1	72.7	68.7	68.6	72.9	68.9	72.5	65.6	58.2	62.4	70.7
XLM-R _{Base}	CC	1	100	85.8	79.7	80.7	78.7	77.5	79.6	78.1	74.2	73.8	76.5	74.6	76.7	72.4	66.5	68.3	76.2
XLM-R	CC	1	100	89.1	84.1	85.1	83.9	82.9	84.0	81.2	79.6	79.8	80.8	78.1	80.2	76.9	73.9	73.8	80.9
Translate everything to English	h and use Eng	glish-o	nly mo	del (TF	RANSLA	ATE-TE	ST)												
BERT-en	Wiki	1	1	88.8	81.4	82.3	80.1	80.3	80.9	76.2	76.0	75.4	72.0	71.9	75.6	70.0	65.8	65.8	76.2
RoBERTa	Wiki+CC	1	1	<u>91.3</u>	82.9	84.3	81.2	81.7	83.1	78.3	76.8	76.6	74.2	74.1	77.5	70.9	66.7	66.8	77.8
Fine-tune multilingual model o	on each traini	ng set	(TRAN	VSLATE	E-TRAI	N)													
Lample and Conneau (2019)	Wiki	N	100	82.9	77.6	77.9	77.9	77.1	75.7	75.5	72.6	71.2	75.8	73.1	76.2	70.4	66.5	62.4	74.2
Fine-tune multilingual model o	on all training	g sets (TRAN	SLATE-	TRAIN	-ALL)													
Lample and Conneau (2019) [†]	Wiki+MT	1	15	85.0	80.8	81.3	80.3	79.1	80.9	78.3	75.6	77.6	78.5	76.0	79.5	72.9	72.8	68.5	77.8
Huang et al. (2019)	Wiki+MT	1	15	85.6	81.1	82.3	80.9	79.5	81.4	79.7	76.8	78.2	77.9	77.1	80.5	73.4	73.8	69.6	78.5
Lample and Conneau (2019)	Wiki	1	100	84.5	80.1	81.3	79.3	78.6	79.4	77.5	75.2	75.6	78.3	75.7	78.3	72.1	69.2	67.7	76.9
XLM-R _{Base}	CC	1	100	85.4	81.4	82.2	80.3	80.4	81.3	79.7	78.6	77.3	79.7	77.9	80.2	76.1	73.1	73.0	79.1
XLM-R	CC	1	100	89.1	<u>85.1</u>	<u>86.6</u>	<u>85.7</u>	<u>85.3</u>	<u>85.9</u>	<u>83.5</u>	<u>83.2</u>	<u>83.1</u>	<u>83.7</u>	<u>81.5</u>	<u>83.7</u>	<u>81.6</u>	<u>78.0</u>	<u>78.1</u>	<u>83.6</u>

THANK YOU

QUESTIONS?