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Knowledge Bases
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• A knowledge base allows for rapid search, 

retrieval, and reuse

• Stores information as answers to questions 

or solutions to problems

• Can be fed into a language model



Examples of Knowledge Bases 
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Visualization as a graph
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Knowledge Bases

• Concepts like classes and individuals are 

modeled as nodes

• Relations as edges of graphs 

• Classes – concepts like documents, 

events, or subjects

• Individuals – instances of a class or an 

object

• Relations – capture relationships between 

classes and individuals

• is-type-of, is-instance-of, and has-

attribute



How knowledge bases are used in NLP models:
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• Entity extraction – replace or augment entity occurrences in text



How knowledge bases are used in NLP models:
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• Coreference resolution

• Coreference resolution is the task of finding all expressions that refer 

to the same entity in a text.

• Entity Linking
Querying knowledge bases from these methods need 

supervised data. Moreover, errors can easily propagate and 

accumulate throughout the pipeline.



Proposed solution for the knowledge bases
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• Language Models

• Ask the model to fill in masked tokens

• “Alex was born in [MASK]”

• Pre-trained high-capacity models such as ELMo and BERT store vast 

amounts of linguistic knowledge useful for downstream tasks

The Pros: 

- Requires no schema engineering 

- No need for human annotations 

- Supports a more diverse/open set of inquiries



Research Questions
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• How much relational knowledge do they store? 

• How does this differ for different types of knowledge such as facts about 

entities, common sense, and general question answering? 

• How does their performance without fine-tuning compare to symbolic 

knowledge bases automatically extracted from text?



LAMA (Language Model Analysis)
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• Consisting of a set of knowledge sources, each comprised of a set of 

facts (subject, relation, object) 

• Success depends on predicting masked objects such as “Dante was born 

in ___”

• Tested for a variety of types of knowledge: relations between entities 

stored in Wikidata, common sense relations between concepts from 

ConceptNet, and so on.



LAMA (Language Model Analysis)
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• Steps for LAMA

• Query each model for a missing token

• Evaluate each model based on how highly they rank the ground truth 

token against every word in a fixed candidate vocabulary



Knowledge Sources and datasets used
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• Google-RE – contains ~60K facts manually extracted from Wikipedia

• Only utilized 3 relations: “place of birth”, “date of birth” and “place of 

death”

• manually defined a template for each considered relation, e.g., 

“[Adam] was born in [Illinois]” for “place of birth”

• T-Rex – is a subset of Wikidata triples

• consider 41 Wikidata relations and subsample at most 1000 facts 

per relation.

• Facts were automatically aligned to Wikipedia (can be noisy)

• e.g. ‘Adolphe Adam died in _.’ for ‘Paris’



Knowledge Sources and datasets used
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• SQuAD

• Question-answering dataset

• a subset of 305 context-insensitive questions with single token 

answers

• Example: rewriting “Who developed the theory of relativity?” as “The 

theory of relativity was developed by __”.

• ConceptNet

• Multilingual knowledge base, initially built on top of Open Mind 

Common Sense sentences

• English parts that have single-token objects covering 16 relations

• Example: Time is __”.
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Language Models used

• Fairseq-fconv

• Multiple layers of gated convolutions

• Trained on the WikiText-103 corpus

• Transformer-XL

• Large-scale LM based on the Transformer

• Takes into account a longer history

• Used relative instead of absolute positional encoding

• Trained on the WikiText-103 corpus
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Language Models used

• ELMO:

• ELMo: Forward and backward LSTM, resulting in ℎ𝑖 and ℎ𝑖
• Trained on the Google Billion Word Dataset

• ELMo 5.5B:

• Trained on English Wikipedia and monolingual news crawl from WMT 

2008-2012

Trained through averaged forward and backward probabilities from the corresponding softmax layers
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Language Models used

• BERT:

• Transformer architecture 

• Trained on the BookCorpus and English Wikipedia

• language modelling (15% of tokens were masked and BERT was trained to 

predict them from context) and next sentence prediction (if a chosen next 

sentence was probable or not given the first sentence)

• BERT-base (12 encoders with 12 bidirectional self-attention heads)

• BERT-large (24 encoders with 16 bidirectional self-attention heads)

Masked the token at position t, fed output to vector corresponding to masked token (ht) into softmax layer
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Baselines

• Freq:

• subject and relation pair, this baseline ranks words based on how 

frequently they appear as objects for the given relation in the test data

• Relation Extraction (RE):

• extracts relation triples from a given sentence using an LSTM-based 

encoder and an attention mechanism 

• constructs a knowledge graph of triples

• At test time, they queried this graph by finding the subject entity and then 

rank all objects in in the correct relation based on the confidence scores by 

the RE
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Baselines

• DrQA

• a popular system for open-domain question answering

• Two-step pipeline:

• First, a TF/IDF information retrieval step is used to find relevant articles 

from a large store of documents (e.g. Wikipedia)

• Secondly, on the retrieved top k articles, a neural reading 

comprehension model then extracts answers
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Metrics

• Rank-based metrics

• For multiple valid objects for Subject-Relation pair, removed all other valid 

objects from the candidates when ranking at test time other than the ones they 

were testing

• Mean precision at k (P@k)

• For a given fact, this value is 1 if the object is ranked among the top k 

results, 0 otherwise
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Results
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Results

REn – naïve entity linking, i.e. exact string matching

REo – uses an oracle for entity-linking, i.e. any given (s, r, o) in sentence x, if any other (s’, r, o’) 

has been extracted in the same sentence, s will be linked to s’, and o to o’
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Results on Google-RE

• From earlier example, “Adam was born in [MASK]” 

• BERT-Large (last column) outperformed all models by a substantial margin
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Results on Google-RE

• More facts and relations than Google-RE 

• BERT-Large performed better on 1-to-1 relations, i.e. “capital-of” 

• N-1: Multiple valid subjects-relations-> 1 correct object 

• N-M relations: multiple objects for a subject-relation pair. i.e. “Brian owns [car, 

laptop, iPhone,etc]
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Results on ConceptNet and SQuAD

• BERT-Large achieved best performance for ConceptNet

• Able to retrieve commonsense knowledge at a similar level to factual knowledge

• Open domain cloze-style (fill in the blanks) 

• Huge performance gap between BERT-Large and supervised DrQA

• Note: BERT and ELMo were both unsupervised and not fine-tuned for this task 

• In terms of P@10 (Top-10 best answers), gap is remarkably small (57.1 for Bl and 63.5 for 

DrQA)

ConceptNet

SQuAD
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Other Results
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Conclusion

• For an unsupervised, not fine-tuned, pre-trained model BERT-Large, it is possible to recall 

knowledge better than its competitors.

• The factual knowledge can be recovered surprisingly well from pretrained language models, 

however, for some relations (particularly N-to-M relations) performance is very poor.

• Language models trained on ever-growing corpora might become a viable alternative to 

traditional knowledge bases extracted from text in the future.
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Limitations

• Only used Single-Token objects as prediction targets

• Chose only query objects in triples

• Still spent time manually defining templates for each relation
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Thank you!
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