
Incoder: A Generative Model for Code
Infilling and Synthesis
Presented by: Levent Toksoz

Motivation

Large Language Models that are trained on large code repositories shows great
potential in neural program synthesis and other code related tasks

However most of these models are designed to generate code left to right

Thus they are not very effective at code editing tasks like fixing bugs, adding
comments or re-naming variables

The ones that utilize Masked Language Modeling are mostly designed to infill very
short spans

Motivation

Also this type of generation (left to right) is not natural for a human - typically we
do not write a code in one left to right pass

Having ability to go back and edit some parts of the code is important

Hence they introduce Incoder - a model that is capable of infilling arbitrary regions
of code

Incoder

Aim of the Incoder is to combine the strengths of both MLM and casual model

Want to take MLM`s ability to condition both left and right context (which is
especially helpful for code infilling) and

Casual Model`s ability to autoregressively generate entire documents

Thus they introduce casual masking procedure

Casual Masking

At Training

Sample number of spans of contiguous tokens in each document from a Poisson
distribution

Sample the length of each span uniformly from the length of the document (make
sure spans do not overlap)

Replace each span k with special mask sentinel token (<Mask:k>)

Casual Masking

Then move the sequence of tokens that are in the span to the end of the
document and mark the beginning of this span with the mask sentinel token and
end with the end of mask token (<EOM>)

By doing this we want to maximize the log probability of the masked document:

Casual Masking

Thus computing the probability of the sequence auto-regressively

Model is trained on cross entropy loss on all tokens except the mask sentinel
tokens (<Mask: k>) since we do not want the model to generate these tokens
during the inference

Casual Masking

Casual Masking

At Inference

Model can either used to generate left to right by sampling autoregressively

Or to insert code at any desired location by placing <Mask:k> token in that
location and doing generation at the end of the document to get bidirectional
context

Training

Data: open source public libraries from Github and Gitlab (mainly python),
StackOverflow questions/answers/comments and code

Code files are filtered by removing the ones that have duplicates and any lines
longer than 3000 tokens or average line length greater than 100 tokens

Training

Metadata is also included for code files (file name, file extension, file source,
number of stars) and for stackoverflow data (question tags and number of votes)

Code is tokenized by using byte-level BPE tokenizer

Tokens are allowed to extend over white spaces to represent certain programming
idioms as one token like import numpy as np

Training

Model architecture is based on Fairseq architecture and trained on 248 V100
GPUs for 24 days with Adam optimizer and polynomially decaying learning rate

Training

Even after 24 days of training they claim that their model is not yet saturated

Experiments

Mainly two types of experiments are performed: Infilling Experiments and Code
Synthesis Experiments

Infilling Experiments are conducted to test the zero-shot infilling ability of the
model on the following programming tasks : 1- Infilling Lines of Code 2- Docstring
generation 3- Code Cloze 4- Return Type Prediction 5- Variable name prediction

Experiments

Compared their approach with two other techniques: standard left to right
generation and left-to-right generation with reranking

Left-to-right generation with reranking essentially uses the left context to propose
candidates to infill the blank and both right and left context to rank it

Infilling Lines of Code Results

Benchmarks are constructed from HumanEval

HumanEval has descriptions of functions paired with their implementation and
several input–output test pairs

Both Multi-line infilling and Single-line infilling is analyzed using Exact Match and
Pass rate (rate at which the completed function passes all of the function’s
input–output pairs) metrics

Infilling Lines of Code Results

Infilling Lines of Code Results

Docstring Generation

CodexGLUE code to text benchmark is used (aim is to generate a natural language
docstring that summarizes a Python code snippet)

Code Cloze

CodexGLUE cloze set is used. (It is made of short natural language description
along with their code in several programming languages)

Aim is to predict whether mask should be filled with max or min

Return Type and Variable Name Prediction

Benchmarks are created from the CodexGlue

Code Synthesis

Evaluates zero shot performance of Incoder on Human Eval and MBPP
benchmarks (aim is to condition on docstrings to generate python code)

Pass Rate on provided test suites is used as a evaluation metric

Code Synthesis

Strengths

Proposes a novel casual masking approach that combines the strength of both
MLM and causal models

It has strong zero-shot performance on most of the editing and code infilling and
tasks

Provides functionality to edit any arbitrary region of the code which is often
neglected by the other large scale transformer based models

Limitations

Mostly focuses on code editing infilling, code synthesis performance of the model
is not that well explored

Full potential of the model is not measured since even after 24 days their
validation performance was increasing

Future work: Supervised infilling via model fine-tuning and or iterative decoding
with model refining its own output

References

Fried, Daniel, et al. "Incoder: A generative model for code infilling and synthesis."
arXiv preprint arXiv:2204.05999 (2022).

