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Motivation

Large Language Models that are trained on large code repositories shows great 
potential in neural program synthesis and other code related tasks

However most of these models are designed to generate code left to right

Thus they are not very effective at code editing tasks like fixing bugs, adding 
comments or re-naming variables

The ones that utilize Masked Language Modeling are mostly designed to infill very 
short spans



Motivation

Also this type of generation (left to right) is not natural for a human - typically we 
do not write a code in one left to right pass 

Having ability to go back and edit some parts of the code is important

Hence they introduce Incoder - a model that is capable of infilling arbitrary regions 
of code



Incoder

Aim of the Incoder is to combine the strengths of both MLM and casual model

Want to take MLM`s ability to condition both left and right context (which is 
especially helpful for code infilling) and

Casual Model`s ability to autoregressively generate entire documents

Thus they introduce casual masking procedure



Casual Masking

At Training

Sample number of spans of contiguous tokens in each document from a Poisson 
distribution

Sample the length of each span uniformly from the length of the document (make 
sure spans do not overlap)

Replace each span k with special mask sentinel token (<Mask:k>)



Casual Masking

Then move the sequence of tokens that are in the span to the end of the 
document and mark the beginning of this span with the mask sentinel token and 
end with the end of mask token (<EOM>)

By doing this we want to maximize the log probability of the masked document:



Casual Masking

Thus computing the probability of the sequence auto-regressively

Model is trained on cross entropy loss on all tokens except the mask sentinel 
tokens (<Mask: k>) since we do not want the model to generate these tokens 
during the inference



Casual Masking



Casual Masking

At Inference

Model can either used to generate left to right by sampling autoregressively

Or to insert code at any desired location by placing <Mask:k>  token in that 
location and doing generation at the end of the document to get bidirectional 
context 



Training 

Data: open source public libraries from Github and Gitlab (mainly python), 
StackOverflow questions/answers/comments and code

Code files are filtered by removing the ones that have duplicates and any lines 
longer than 3000 tokens or average line length greater than 100 tokens



Training

Metadata is also included for code files (file name, file extension, file source, 
number of stars) and for stackoverflow data (question tags and number of votes)

Code is tokenized by using byte-level BPE tokenizer

Tokens are allowed to extend over white spaces to represent certain programming 
idioms as one token like import numpy as np



Training

Model architecture is based on Fairseq architecture and trained on 248 V100 
GPUs for 24 days with Adam optimizer and polynomially decaying learning rate



Training

Even after 24 days of training they claim that their model is not yet saturated



Experiments

Mainly two types of experiments are performed: Infilling Experiments and Code 
Synthesis Experiments

Infilling Experiments are conducted to test the zero-shot infilling ability of the 
model on the following programming tasks : 1- Infilling Lines of Code 2- Docstring 
generation 3- Code Cloze 4- Return Type Prediction 5- Variable name prediction



Experiments

Compared their approach with two other techniques: standard left to right 
generation and left-to-right generation with reranking 

Left-to-right generation with reranking essentially uses the left context to propose 
candidates to infill the blank and both right and left context to rank it



Infilling Lines of Code Results

Benchmarks are constructed from HumanEval 

HumanEval has descriptions of functions paired with their implementation and 
several input–output test pairs

Both Multi-line infilling and Single-line infilling is analyzed using Exact Match and 
Pass rate (rate at which the completed function passes all of the function’s 
input–output pairs) metrics



Infilling Lines of Code Results



Infilling Lines of Code Results



Docstring Generation

CodexGLUE code to text benchmark is used (aim is to generate a natural language 
docstring that summarizes a Python code snippet )



Code Cloze 

CodexGLUE cloze set is used. (It is made of short natural language description 
along with their code in several programming languages)

Aim is to predict whether mask should be filled with max or min



Return Type and Variable Name Prediction

Benchmarks are created from the CodexGlue



Code Synthesis

Evaluates zero shot performance of Incoder on Human Eval and MBPP 
benchmarks (aim is to condition on docstrings to generate python code)

Pass Rate on provided test suites is used as a evaluation metric 



Code Synthesis



Strengths

Proposes a novel casual masking approach that combines the strength of both 
MLM and causal models

It has strong zero-shot performance on most of the editing and code infilling and 
tasks

Provides functionality to edit any arbitrary region of the code which is often 
neglected by the other large scale transformer based models 



Limitations

Mostly focuses on code editing infilling, code synthesis performance of the model 
is not that well explored

Full potential of the model is not measured since even after 24 days their 
validation performance was increasing

Future work:  Supervised infilling via model fine-tuning and or iterative decoding 
with model refining its own output
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