4

Incoder: A Generative Model for Code‘
Infilling and Synthesis

Presented by: Levent Toksoz

Motivation

Large Language Models that are trained on large code repositories shows great
potential in neural program synthesis and other code related tasks

However most of these models are designed to generate code left to right

Thus they are not very effective at code editing tasks like fixing bugs, adding
comments or re-naming variables

The ones that utilize Masked Language Modeling are mostly designed to infill very
short spans

Motivation

Also this type of generation (left to right) is not natural for a human - typically we
do not write a code in one left to right pass

Having ability to go back and edit some parts of the code is important

Hence they introduce Incoder - a model that is capable of infilling arbitrary regions
of code

Incoder

Aim of the Incoder is to combine the strengths of both MLM and casual model

Want to take MLM's ability to condition both left and right context (which is
especially helpful for code infilling) and

Casual Model's ability to autoregressively generate entire documents

Thus they introduce casual masking procedure

Casual Masking

At Training

Sample number of spans of contiguous tokens in each document from a Poisson
distribution

Sample the length of each span uniformly from the length of the document (make
sure spans do not overlap)

Replace each span k with special mask sentinel token (<Mask:k>)

Casual Masking

Then move the sequence of tokens that are in the span to the end of the
document and mark the beginning of this span with the mask sentinel token and
end with the end of mask token (<EOM>)

By doing this we want to maximize the log probability of the masked document:

log P([Left; <Mask:@>; Right; <Mask:@>; Span; <EOM>]) (1)

Casual Masking

Thus computing the probability of the sequence auto-regressively

Model is trained on cross entropy loss on all tokens except the mask sentinel
tokens (<Mask: k>) since we do not want the model to generate these tokens
during the inference

Casual Masking

Training

Original Document

Masked Document

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
word_counts = {}
for line in f:
for word in line.split():
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] =1
return word_counts

def count_words(filename: str) -> Dict[str, int]:
"""Count the number of occurrences of each word in the file."""
with open(filename, 'r') as f:
<MASK:8> in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
return word_counts
<MASK:0> ‘word_counts = {}
for line in f:
for word in line.split():
if word <EOM>

Casual Masking

At Inference
Model can either used to generate left to right by sampling autoregressively

Or to insert code at any desired location by placing <Mask:k> token in that
location and doing generation at the end of the document to get bidirectional
context

P(- | [Left; <Mask:@>; Right; <Mask:0>]) (2)

Training

Data: open source public libraries from Github and Gitlab (mainly python),
StackOverflow questions/answers/comments and code

Code files are filtered by removing the ones that have duplicates and any lines
longer than 3000 tokens or average line length greater than 100 tokens

Training

Metadata is also included for code files (file name, file extension, file source,
number of stars) and for stackoverflow data (question tags and number of votes)

Code is tokenized by using byte-level BPE tokenizer

Tokens are allowed to extend over white spaces to represent certain programming
idioms as one token like import numpy as np

Training

Model architecture is based on Fairseq architecture and trained on 248 V100
GPUs for 24 days with Adam optimizer and polynomially decaying learning rate

Parameter INCODER-1.3B INCODER-6.7B
—decoder-embed-dim 2048 4096
—decoder-output-dim 2048 4096
—decoder-input-dim 2048 4096
—decoder-ffn-embed-dim 8192 16384
—decoder-layers 24 32
—decoder-normalize-before True True
—decoder-attention-heads 32 32
—share-decoder-input-output-embed True True
—decoder-learned-pos False False

Table 8: Fairseq architecture hyperparameters for our INCODER models.

Training

Even after 24 days of training they claim that their model is not yet saturated

8 —
InCoder-6B
—— InCoder-1B

Validation Perplexity
[¢)]
1

I T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Training Data Seen

Figure 2: Loss curves show that perplexity is still
improving after one epoch and that perplexity
improves substantially with a larger model size.
This suggests that increasing epochs, data size, or
model size would improve performance.

Experiments

Mainly two types of experiments are performed: Infilling Experiments and Code
Synthesis Experiments

Infilling Experiments are conducted to test the zero-shot infilling ability of the
model on the following programming tasks : 1- Infilling Lines of Code 2- Docstring
generation 3- Code Cloze 4- Return Type Prediction 5- Variable name prediction

Experiments

Compared their approach with two other techniques: standard left to right
generation and left-to-right generation with reranking

Left-to-right generation with reranking essentially uses the left context to propose
candidates to infill the blank and both right and left context to rank it

Infilling Lines of Code Results

Benchmarks are constructed from HumankEval

HumanEval has descriptions of functions paired with their implementation and
several input—output test pairs

Both Multi-line infilling and Single-line infilling is analyzed using Exact Match and
Pass rate (rate at which the completed function passes all of the function’s
input—output pairs) metrics

Infilling Lines of Code Results

Method Pass Rate Exact Match
L-R single 48.2 38.7
L-R reranking 54.9 44.1
CM infilling 69.0 56.3

Method Pass Rate Exact Match

(a) Single-line infilling.

L-R single 249 15.8
L-R reranking 28.2 17.6
CM infilling 38.6 20.6

(b) Multi-line infilling.

Infilling Lines of Code Results

Single-Line Infilling Multi-Line Infilling
0.8 0.74d|— CM Infilling
0.74 / — LRSingle
0.6 —— L-R Reranking
0.6 !
£ £ 0.5+
e 0.5 fo'd
@ @ 0.4
o 0.4 ©
e & 0.3
0.39 —— CM Infilling _
024 — L-R Single 0.2
—— L-R Reranking i
0'1_ T T T T T 01 T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Fraction of Lines in Right Context Fraction of Lines in Right Context

Figure 4: Infilling pass rate by the fraction of the function’s lines which are provided to the right of
the region that must be infilled, for single-line infilling (left) and multi-line infilling (right). Shaded
regions give 95% confidence intervals, estimated using bootstrap resampling. Our causal-masked
(CM) infilling method, blue, consistently outperforms both of the left-to-right (L-R) baselines, with
larger gains as more right-sided context becomes available (the right side of both graphs).

Docstring Generation

CodexGLUE code to text benchmark is used (aim is to generate a natural language
docstring that summarizes a Python code snippet)

Method BLEU
Ours: L-R single 16.05
Ours: L-R reranking 17.14
Ours: Causal-masked infilling 18.27
RoBERTa (Finetuned) 18.14
CodeBERT (Finetuned) 19.06
PLBART (Finetuned) 19.30
CodeT5 (Finetuned) 20.36

Table 2: CodeXGLUE Python Docstring generation BLEU scores. Our model is evaluated in a
zero-shot setting, with no fine-tuning for docstring generation, but it approaches the performance of
pretrained code models that are fine-tuned on the task’s 250K examples (bottom block).

Code Cloze

CodexGLUE cloze set is used. (It is made of short natural language description
along with their code in several programming languages)

Aim is to predict whether mask should be filled with max or min

Method Python JavaScript Ruby Go Java PHP
Left-to-right single 76.9 77.6 65.8 704 741 77.1
Left-to-right reranking ~ 87.9 90.1 763 928 91.7 904
CM infill-token 81.8 73.9 81.6 954 776 87.0
CM infill-region 86.2 91.2 789 947 898 914
CodeBERT 82.2 86.4 86.8 90.8 90.5 88.2

Table 3: Accuracy on the CodeXGLUE max/min cloze task. We compare four different inference
methods. Left-to-right single: scoring with left-to-right ordering using only the left context and the
completion (containing max or min); Left-to-right reranking: scoring with left-to-right ordering using
the left context, completion, and right context; CM infill-token: causal masking scoring, using only
a single token (containing max or min) as the infill, CM infill-region: causal masking scoring that
additionally contains 10 tokens from the right side context.

Return Type and Variable Name Prediction

Benchmarks are created from the CodexGlue

Method Accuracy

Left-to-right single 184
Left-to-right reranking 235
Causal-masked infilling 30,6

Table 5: Results on the variable renaming benchmark that we construct from CodeXGLUE. Our
model benefits from using the right-sided context in selecting (L-R reranking and CM infilling) and
proposing (CM infilling) variable names.

Method Accuracy
Left-to-right single 12.0
Left-to-right reranking 12.4

Causal-masked infilling 58.1

(a) Results on the test set of the
benchmark that we construct from
CodeXGLUE.

Code Synthesis

Evaluates zero shot performance of Incoder on Human Eval and MBPP
benchmarks (aim is to condition on docstrings to generate python code)

Pass Rate on provided test suites is used as a evaluation metric

Code Synthesis

Model Size Python Other Other Code Infill? HE HE HE MBPP
(B) Code (GB) Code(GB) (GB) License @1 @10 @100 @1
Released
CodeParrot [61] 1:5 50 None None — 4.0 8.7 17.9 —
PolyCoder [68] 2.7 16 238 None — 5.6 9.8 17.7 —
GPT-J [63, 18] 6 6 90 730 — 11.6 157 277 —
INCODER-6.7B 6.7 52 107 57 Permissive v 152 278 470 19.4
GPT-NeoX [14] 20 6 90 730 — 154 256 412 —
CodeGen-Multi [46] 6.1 62 375 1200 — 182 28.7 449 —
CodeGen-Mono [46] 6.1 279 375 1200 — 26.1 423 65.8 —
CodeGen-Mono [46] 16.1 279 375 1200 — 293 499 750 —
Unreleased
LaMDA [10, 60, 21] 137 None None 77? — 140 — 47.3 14.8
AlphaCode [44] 1.1 54 660 None — 171 282 453 —
Codex-12B [18] 12 180 None >570 — 288 468 723 —
PalLM-Coder [21] 540 ~20 ~200 ~4000 Permissive 360 — 88.4 47.0

Table 6: A comparison of our INCODER-6.7B model to published code generation systems using
pass rates @ K candidates sampled on the HumanEval and MBPP benchmarks. All models are
decoder-only transformer models. A “Permissive” code license indicates models trained on only
open-source repositories with non-copyleft licenses. The GPT-J, GPT-NeoX, and CodeGen models
are pre-trained on The Pile [26], which contains a portion of GitHub code without any license filtering,
including 6 GB of Python. Although the LaMDA model does not train on code repositories, its
training corpus includes ~18 B tokens of code from web documents. The total file size of the LaMDA
corpus was not reported, but it contains 2.8 T tokens total. We estimate the corpus size for PaLM
using the reported size of the code data and the token counts per section of the corpus.

Strengths

Proposes a novel casual masking approach that combines the strength of both
MLM and causal models

It has strong zero-shot performance on most of the editing and code infilling and
tasks

Provides functionality to edit any arbitrary region of the code which is often
neglected by the other large scale transformer based models

Limitations

Mostly focuses on code editing infilling, code synthesis performance of the model
is not that well explored

Full potential of the model is not measured since even after 24 days their
validation performance was increasing

Future work: Supervised infilling via model fine-tuning and or iterative decoding
with model refining its own output

References

Fried, Daniel, et al. "Incoder: A generative model for code infilling and synthesis."
arXiv preprint arXiv:2204.05999 (2022).

