Large Language Models Can Be Strong
Differentially Private Learners

ICLR 2022
Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto

Background: User data and privacy issues in NLP

- There are inherent conflicts between data collection and privacy protection
for tasks in NLP (e.g., building dialog generation systems)
- Private user data is abundant and of high quality. Can we use it directly?

Public data (low quality, large quantity) Annotator-driven data (high quality, costly)

Private user data (high quality, large quantity)

Background: User data and privacy issues in NLP

- Directly training large language models (LMs) on private user data can be

Problematic

Large LMs can memorize training data
Data extraction attacks are surprisingly effective for large LMs (Carlini et al., 2021)

Background: Need for privacy-preserving techniques

- We need provable guarantees that models won't leak private data
- Goal

Use private data
Do not leak them

Background: Differential privacy

- Differential privacy (DP) is a formal privacy guarantee for an algorithm used in
US census, in Google analytics, at Apple..
- Past attempts at enforcing DP for vision tasks (via DP-SGD) resulted in

models with low utility

without your d
———pp FUNCtion output A

g .0 OutputAandA’
7 are similar

‘ PN ———> Function output A

This work

- Q: Is it possible to build high quality DP NLP models on moderate amounts of

private training data?
- A:Yes!

- This work:
- Leverage (public) off-the-shelf pretrained models and perform fine-tuning with DP-Adam
- Surprisingly, full fine-tuning-updating all model parameters yields strong performance
- Even more surprisingly, the larger the pretrained model, the better the performance of private

fine-tuning, unlike what theory for private convex learning prescribes

Overview

- Overall
- Large language model (transformer-based) can achieve differential privacy

- Contributions
- Effective: tricks for hyperparameter setting
- Efficient: ghost clipping

Method overview

- Effective
- Hyperparameters
- Fine-tuning objective
- Efficient

- Ghost clipping: Clipping per example gradients without instantiating per example gradients.

Effective

- Good hyperparameters
- DP learning is sensitive to choices of hyperparameters
- They did a thorough study of how hyperparameters affect performance
- Good hyperparameters tend to transfer across tasks — we transferred tuning results on one
task to all remaining tasks
- Totally based on experiment findings
- Fine-tuning objective
- Objectives that make learning easy results in better private models
- They want the fine-tuning objective to be close to the pretraining objective
- Alignment

Hyperparameters

- Batch size and learning rate
- Good batch sizes and learning rates for private learning is different from those
typical for non-private learning

- Case 1: Fixed epochs (compute bound)

- Need large batch size
- Need large learning rate

el 2.12 12.92 28.46

(=2}
o

w
o

i eerP R 23.26 45.09 49.07

»
o

RO REIPXE 47.00 48.51 53.3053.34 49.45 42.69

w
o

pVREIPAR 36.27 33.52 32.96 30.46 29.69 30.00

(€=3) N379 3=s Ise1 323

learning rate n

pREIPAR 30.60 29.92 29.00 29.21 29.75 28.09

fuy
o

pVRE/PZE 29.08 29.56 29.38 29.71 16.75 10.97

OIS S, VR S
yoe ¢ &

batch size B

Hyperparameters

- Batch size and number of epochs

- Case 2: Unconstrained epochs

- Fix the update steps (large batches, each epoch less updates, more epochs)
- Jointly scaling both the batch size and number of epochs is almost always better

§=0+% §=42isClip(VL;,C), 2~N(0,C25:1,) =N (0,C*541,),

- Heuristic explanation:

- o oN , B is batch size
- SiOeff = q = 5"

- Largerr, better perfort 7 — ||’§||2/||E||2

Hyperparameters

- Batch size and number of epochs

- Case 2: Unconstrained epochs
- Fix the update steps (large batches, each epoch less updates, more epochs)
- Jointly scaling both the batch size and number of epochs is almost always better
- Larger batch size, larger sampling rate q (just B/N), smaller Peff | larger r, lower NLL

R R E

[Q ool Fo o o
NNNNNNNN
ST T S e
[I SR

o
@
x
S

E2E test set per token NLL
il

effective noise multiplier Oefs

46x107" I+

10 10 0.0020 0.0025 0.0030 0.0035 0.0040
sampling rate q average initial signal-to-noise ratio

Fine-tuning task formulation matters

- For classification, CLS-token fine-tuning introduces a discrepancy between
pretraining (masked language modeling) and fine-tuning (network on top of
CLS)

- This makes the fine-tuning problem slightly difficult

Fine-tuning task formulation matters

- Instead of predicting integer labels, they ask the model to predict textualized
labels during fine-tuning

- Example: sentiment classification
- Given sentence <input>, classify as positive or negative sentiment
- Construct template "<input> It is [MASK]."
- Predict [MASK] in the template, where [MASK] is "awesome" or "terrible"
- Easier fine-tuning problem results in better private models (even with generic templates)

Effective

- Good hyperparameters
- DP learning is sensitive to choices of hyperparameters
- They did a thorough study of how hyperparameters affect performance
- Good hyperparameters tend to transfer across tasks — we transferred tuning results on one
task to all remaining tasks
- Totally based on experiment findings
- Large batch size
- Fine-tuning objective
- Objectives that make learning easy results in better private models
- They want the fine-tuning objective to be close to the pretraining objective
- Alignment
- Templates

- Then, how to make the model efficient?

Ghost clipping

- DP optimization is costly due to clipping per example gradients

- Naively implemented, this step instantiates per example gradients and can be
prohibitively costly in memory

- They present a technique for per example gradient clipping without
instantiating per example gradients for any linear layer in a large Transformer
model

Problem: Per-example gradient

§=9+% §=25>pClip(VL;,C), Z~ N(o, C%@Ip) — N(o, 02%%1,9),

- Clip(,) means reweighting
- Scaling factor: ¢; = min(1, ¢/|vc,|,)
- Reweighted loss: " ¢;L;

- Challenge:
- Compute ||V£z'||2

- Tricks

- Per example gradient — Layer by layer gradient
- Ghost clipping for transformer

Trick 1: Layer by layer gradient

- |IVLi]|, takes a large memory to instantiating

- Observations
Neural networks have multi-lavers
- Vestorrom Jully = [(lwillys - -5 luli)ly
- u

S
IV Lillg s -5 |V Lillo

We can instantiating one layer each time
Compute separately

Trick 2: Ghost clipping

2
We still need to compute each layer norm ||VW£7: ”F

- Linear layer
BxTxd
@ input to a linear layer a € R
gi gradient of the linear layer g € REXTxp
Wwelght of the linear layer W e Rpxd
- Normal way
: T
Step1: VwLi=gla €R*% O(Bpd)

Step 2. Compute the norm
Ghost clipping

IVwLi|lz = vec(aza]) Tvec(gig)

Thus not necessary to compute step O(BTZ)

GPT-2, d ~ 50,000 and p = 768 context window 1" < 1024

Ghost clipping

- Performance

86 115

non-private

Opacus

Lee & Kifer, 2020

JAX (+jit & vmap)
ghost (ours)

60

80
62.1 631
40 509
34 34 422
40
26
24
22
20 28 218 234
2 193 .
o 10] 10 128
87
. : I l I §
0 . 0 . 0 L ."‘0 .

GPT-2 GPT-2-medium GPT-2-large GPT-2 GPT-2-medium GPT-2-large

100

80

maximum batch size (single TITAN RTX)
examples per second

(a) Memory (b) Throughput

- Then, the model is effective and efficient now.

Does high dimensionality degrade performance?

- Do larger models lead to better or worse results?
- Answer: Larger models are better.

- Are fine-tuning methods that privatize fewer parameters more performant?
- Answer: Not true in general.

88
.. S e
e T GPT-2 (£ =8)
8 large 68 ... non-private T-GEN (D & J, 2016)
5 ge sumummmmmeee s o = non-private fine-tuned GPT-2
""""""""""""""""""""""""""""""""""" w 2.
§ base i GPT-2-large
L D
2 3 64
> 80 =
8 e 2
—%— BERT family (¢ = 3) =
E 78 N RoBERTa family (¢ = 3) W e
S, Adstil aSe__ -~ TextHide (m, k) = (256, 4) (BERT-base) L o S
s === TextHide (m, k) = (256, 4) (RoBERTa-base)
------ non-private BERT-base (Devlin et al., 2018) 60
74 istill non-private ROBERTa-base (Liu et al., 2019)
50 100 150 200 250 300 100 200 300 400 500 600 700
number of non-embedding parameters (millions) number of non-embedding parameters (millions)
(a) Sentence classification (b) Natural language generation

MNLI-matched (Williams et al., 2018) E2E (Novikova et al., 2017)

Sentence classification

Table 1: Full fine-tuning larger pretrained models with text infilling has best performance. Results
are dev set accuracies. Best numbers based on two-sample test for each privacy level are in bold.

e=3 €e=28
Method
MNLI-(m/mm) QQP QNLI SST-2 MNLI-(m/mm) QQP QNLI SST-2
RGP (RoBERTa-base) - - - - 80.5/79.6 855 87.2 91.6
RGP (RoBERTa-large) - - - - 86.1/86.0 86.7 90.0 93.0
full (RoBERTa-base) 82.47/82.10 85.41 84.62 86.12 83.30/83.13 86.15 84.81 85.89
full (RoBERTa-large) 85.53/85.81 86.65 88.94 90.71 86.28/86.54 87.49 89.42 90.94

full + infilling (RoBERTa-base) 82.45/82.99 85.56 87.42 91.86 83.20/83.46 86.08 87.94 92.09
full + infilling (RoOBERTa-large) 86.43/86.46 86.43 90.76 93.04 87.02/87.26 87.47 91.10 93.81

€ ~ (Gaussian DP + CLT) 2:92 252 2.00 1.73 5.83 585 4775 433
e ~ (Compose tradeoff func.) 2.75 2775 257 241 7.15 7.16 6.87 6.69

Results overview

- For classification, DP fine-tuning can outperform TextHide (InstaHide for text)
- For generation, DP fine-tuning can outperform strong non-private baselines
- Larger and better pretrained models result in better fine-tuned performance

........... : —5= GPT2 (£ =3)

—%— GPT-2(e=8)
> 86 :
8 large 68 ... non-private T-GEN (D & J, 2016)
58) +++= non-private fine-tuned GPT-2
3 |
& @ 66
s 82 S
o Q
2 2 64
(!>.) 80 *qw-;
© —— BERT family (¢ = 3) =
E 18 — RoBERTa family (€ = 3) We
= istil 2258 —===" TextHide (m, k) = (256, 4) (BERT-base) [o 4
é 6 --- TextHide (m, k) = (256, 4) (RoBERTa-base)
-+ non-private BERT-base (Devlin et al., 2018) 60
74 istill -+ non-private RoBERTa-base (Liu et al., 2019)
50 100 150 200 250 300 100 200 300 400 500 600 700
number of non-embedding parameters (millions) number of non-embedding parameters (millions)

(a) Sentence classification (b) Natural language generation

Generation
- Epsilon, smaller, better

Table 2: Full fine-tuning performs on par with or outperforms others methods that execute gradient
update in low dimensional spaces. Results are on E2E from fine-tuning GPT-2.

. Gaussian DP Compose Method
Meric DP Guarantee + CLT tradeoff func. full LoRA prefix RGP top2 retrain
e=3 €~ 2.68 e~ 275 61.519 58.153 47.772 58.482 25.920 15.457
BLEU e=38 €~ 6.77 e~ 727 63.189 63.389 49.263 58.455 26.885 24.247
non-private - 69.463 69.682 68.845 68.328 65.752 65.731
e=3 €~ 2.68 e~ 2.75 65.670 65.773 58.964 65.560 44.536 35.240
ROUGE-L €e=38 €~ 6.77 e~ 727 66429 67.525 60.730 65.030 46.421 39.951

non-private - - 71.359 71.709 70.805 68.844 68.704 68.751

Dialog Generation

Table 3: Fine-tuning with DP-Adam yields high quality chit-chat dialog generation models.

Gaussian DP Compose Metrics
Model DP Guarantee +CLT tradeoff func. F11 Perplexity | Quality (human) 1
€e=3 €~ 2.54 e~ 273 1590 24.59 -
GPT-2 e=8 € ~ 6.00 e~ 713 16.08 23.57 -
non-private - - 17.96 18.52 -
e=3 €~ 2.54 e~ 273 1599 20.68 -
GPT-2-medium €e=28 € ~ 6.00 e~ 7.13 1653 19.25 -
non-private - - 18.64 15.40 -
€e=3 €~ 2.54 e~ 273 1737 17.64 2.82(2.56,3.09)
DialoGPT-medium €e=28 € ~ 6.00 e~ 7.13 17.56 16.79 3.09 (2.83,3.35)
non-private - - 19.28 14.28 3.26 (3.00, 3.51)
HuggingFace (ConvAI2 winner) non-private - - 19.09 17.51 -
HuggingFace (our implementation) non-private - - 16.36 20.55 3.23(2.98, 3.49)

Reference - - - - - 3.74 (3.49, 4.00)

Summary

- Large LMs can be effectively fine-tuned under DP if hyperparameters and
the fine-tuning objective are set right

- Full fine-tuning large LMs under DP can be memory efficient

- Better and larger pretrained models yield improved private fine-tuning results

Thank you!

Q&A

