Large Language Models Can Be Strong Differentially Private Learners

ICLR 2022 Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto

Background: User data and privacy issues in NLP

- There are inherent **conflicts** between data collection and privacy protection for tasks in NLP (e.g., building dialog generation systems)
- Private user data is abundant and of high quality. Can we use it directly?

Public data (low quality, large quantity)

Annotator-driven data (high quality, costly)

Private user data (high quality, large quantity)

Background: User data and privacy issues in NLP

- Directly training large language models (LMs) on private user data can be Problematic
 - Large LMs can memorize training data
 - Data extraction attacks are surprisingly effective for large LMs (Carlini et al., 2021)

Background: Need for privacy-preserving techniques

- We need provable guarantees that models won't leak private data
- Goal
 - Use private data
 - Do not leak them

Background: Differential privacy

- Differential privacy (DP) is a formal privacy guarantee for an algorithm used in US census, in Google analytics, at Apple..
- Past attempts at enforcing DP for vision tasks (via DP-SGD) resulted in models with low utility

This work

- Q: Is it possible to build high quality DP NLP models on moderate amounts of private training data?
- A: Yes!
- This work:
 - Leverage (public) off-the-shelf **pretrained** models and perform fine-tuning with DP-Adam
 - Surprisingly, full fine-tuning-updating **all model parameters** yields strong performance
 - Even more surprisingly, the **larger** the pretrained model, the better the performance of private fine-tuning, unlike what theory for private convex learning prescribes

Overview

- Overall
 - Large language model (transformer-based) can achieve differential privacy
- Contributions
 - Effective: tricks for hyperparameter setting
 - Efficient: ghost clipping

Method overview

- Effective
 - Hyperparameters
 - Fine-tuning objective
- Efficient
 - Ghost clipping: Clipping per example gradients without instantiating per example gradients.

Effective

- Good hyperparameters
 - DP learning is sensitive to choices of hyperparameters
 - They did a thorough study of how hyperparameters affect performance
 - Good hyperparameters tend to transfer across tasks we transferred tuning results on one task to all remaining tasks
 - Totally based on experiment findings
- Fine-tuning objective
 - Objectives that make learning easy results in better private models
 - They want the fine-tuning objective to be close to the pretraining objective
 - Alignment

Hyperparameters

- Batch size and learning rate
- Good batch sizes and learning rates for private learning is different from those typical for non-private learning
- Case 1: Fixed epochs (compute bound)
 - Need large batch size
 - Need large learning rate

Hyperparameters

- Batch size and number of epochs -
- Case 2: Unconstrained epochs -
 - Fix the update steps (large batches, each epoch less updates, more epochs) -
 - Jointly scaling both the batch size and number of epochs is almost always better -

$$\overline{g} = \widetilde{g} + \overline{z}, \quad \widetilde{g} = \frac{1}{B} \sum_{i \in \mathcal{B}} \operatorname{Clip}(\nabla \mathcal{L}_i, C), \quad \overline{z} \sim \mathcal{N}\left(0, C^2 \frac{\sigma^2}{B^2} I_p\right) = \mathcal{N}\left(0, C^2 \frac{\sigma^2}{N^2} I_p\right),$$

- Heuristic explanation: -
 - , B is batch size - Si $\sigma_{\text{eff}} = \frac{\sigma}{q} = \frac{\sigma N}{B}$ - Larger r, better perform $r = \|\widetilde{g}\|_2 / \|\overline{z}\|_2$

Hyperparameters

- Batch size and number of epochs
- Case 2: Unconstrained epochs
 - Fix the update steps (large batches, each epoch less updates, more epochs)
 - Jointly scaling both the batch size and number of epochs is almost always better
 - Larger batch size, larger sampling rate q (just B/N), smaller $\sigma_{
 m eff}$, larger r, lower NLL

Fine-tuning task formulation matters

- For classification, CLS-token fine-tuning introduces a discrepancy between pretraining (masked language modeling) and fine-tuning (network on top of CLS)
- This makes the fine-tuning problem slightly difficult

Fine-tuning task formulation matters

- Instead of predicting integer labels, they ask the model to predict textualized labels during fine-tuning
- Example: sentiment classification
 - Given sentence <input>, classify as positive or negative sentiment
 - Construct template "<input> It is [MASK]."
 - Predict [MASK] in the template, where [MASK] is "awesome" or "terrible"
 - Easier fine-tuning problem results in better private models (even with generic templates)

Effective

- Good hyperparameters
 - DP learning is sensitive to choices of hyperparameters
 - They did a thorough study of how hyperparameters affect performance
 - Good hyperparameters tend to transfer across tasks we transferred tuning results on one task to all remaining tasks
 - Totally based on experiment findings
 - Large batch size
- Fine-tuning objective
 - Objectives that make learning easy results in better private models
 - They want the fine-tuning objective to be close to the pretraining objective
 - Alignment
 - Templates
- Then, how to make the model efficient?

Ghost clipping

- DP optimization is costly due to clipping **per example gradients**
- Naively implemented, this step instantiates per example gradients and can be prohibitively costly in memory
- They present a technique for per example gradient clipping **without** instantiating per example gradients for any linear layer in a large Transformer model

Problem: Per-example gradient

$$ar{g} = \widetilde{g} + \overline{z}, \quad \widetilde{g} = rac{1}{B} \sum_{i \in \mathcal{B}} \operatorname{Clip}(
abla \mathcal{L}_i, C), \quad \overline{z} \sim \mathcal{N}\left(0, C^2 rac{\sigma^2}{B^2} I_p
ight) = \mathcal{N}\left(0, C^2 rac{\sigma^2}{N^2} I_p
ight),$$

- Clip(,) means reweighting
 - Scaling factor: $c_i = \min(1, C/\|
 abla \mathcal{L}_i\|_2)$
 - Reweighted loss: $\sum_i c_i \mathcal{L}_i$
- Challenge:
 - Compute $\|
 abla \mathcal{L}_i \|_2$
- Tricks
 - Per example gradient \rightarrow Layer by layer gradient
 - Ghost clipping for transformer

Trick 1: Layer by layer gradient

- $\|\nabla \mathcal{L}_i\|_2$ takes a large memory to instantiating -
- Observations -

 - Neural networks have multi-layers Vector norm: $\|u\|_2 = \|(\|u_1\|_2, \dots, \|u_k\|_2)\|_2$
- Thus -

$$\|
abla_{W^{(1)}}\mathcal{L}_i\|_2,\ldots,\|
abla_{W^{(L)}}\mathcal{L}_i\|_2$$

- We can instantiating one layer each time -
- Compute separately -

Trick 2: Ghost clipping

- We still need to compute each layer norm
- Linear layer
 - a_i input to a linear layer
 - g_i gradient of the linear layer
 - W weight of the linear layer
- Normal way

- Step 1:
$$abla_W \mathcal{L}_i = g_i^{ op} a_i \in \mathbb{R}^{p imes d}.$$
 \mathcal{O}

- Step 2: Compute the norm
- Ghost clipping $\|
 abla_W \mathcal{L}_i \|_{\mathrm{F}}^2 = \operatorname{vec}(a_i a_i^{ op})^{ op} \operatorname{vec}(g_i g_i^{ op})$

Thus not necessary to compute step $\mathcal{O}(BT^2)$

GPT-2, $d \approx 50,000$ and p = 768 context window $T \leq 1024$

(Bpd)

 $a \in \mathbb{R}^{B \times T \times d}$

 $g \in \mathbb{R}^{B \times T \times p}$

 $W \in \mathbb{R}^{p \times d}$

 $\|\nabla_W \mathcal{L}_i\|_{\mathrm{F}}^2$

Ghost clipping

- Performance

- Then, the model is effective and efficient now.

Does high dimensionality degrade performance?

- Do larger models lead to better or worse results?
 - Answer: Larger models are better.
- Are fine-tuning methods that privatize fewer parameters more performant?
 - Answer: Not true in general.

Sentence classification

Table 1: Full fine-tuning larger pretrained models with text infilling has best performance. Results are dev set accuracies. Best numbers based on two-sample test for each privacy level are in bold.

Mathad	$\epsilon = 3$				$\epsilon = 8$				
Method	MNLI-(m/mm)	QQP	QNLI	SST-2	MNLI-(m/mm)	QQP	QNLI	SST-2	
RGP (RoBERTa-base)	-	-	-	-	80.5/79.6	85.5	87.2	91.6	
RGP (RoBERTa-large)	-	-	-	-	86.1/86.0	86.7	90.0	93.0	
full (RoBERTa-base)	82.47/82.10	85.41	84.62	86.12	83.30/83.13	86.15	84.81	85.89	
full (RoBERTa-large)	85.53/85.81	86.65	88.94	90.71	86.28/86.54	87.49	89.42	90.94	
full + infilling (RoBERTa-base)	82.45/82.99	85.56	87.42	91.86	83.20/83.46	86.08	87.94	92.09	
full + infilling (RoBERTa-large)	86.43/86.46	86.43	90.76	93.04	87.02/87.26	87.47	91.10	93.81	
$\epsilon \approx$ (Gaussian DP + CLT)	2.52	2.52	2.00	1.73	5.83	5.85	4.75	4.33	
$\epsilon \approx$ (Compose tradeoff func.)	2.75	2.75	2.57	2.41	7.15	7.16	6.87	6.69	

Results overview

- For classification, DP fine-tuning can outperform TextHide (InstaHide for text)
- For generation, DP fine-tuning can outperform strong non-private baselines
- Larger and better pretrained models result in better fine-tuned performance

Generation

- Epsilon, smaller, better

Table 2: Full fine-tuning performs on par with or outperforms others methods that execute gradient update in low dimensional spaces. Results are on E2E from fine-tuning GPT-2.

Metric	DP Guarantee	Gaussian DP + CLT	Compose tradeoff func.	full	LoRA	Meth prefix	od RGP	top2	retrain
BLEU	$\begin{array}{c} \epsilon = 3 \\ \epsilon = 8 \\ \text{non-private} \end{array}$	$\begin{array}{c} \epsilon \approx 2.68 \\ \epsilon \approx 6.77 \end{array}$	$\begin{array}{l} \epsilon \approx 2.75 \\ \epsilon \approx 7.27 \end{array}$	61.519 63.189 69.463	58.153 63.389 69.682	47.772 49.263 68.845	58.482 58.455 68.328	25.920 26.885 65.752	15.457 24.247 65.731
ROUGE-L	$egin{array}{c} \epsilon = 3 \ \epsilon = 8 \ { m non-private} \end{array}$	$\begin{array}{l} \epsilon \approx 2.68 \\ \epsilon \approx 6.77 \\ - \end{array}$	$\begin{array}{l} \epsilon \approx 2.75 \\ \epsilon \approx 7.27 \\ - \end{array}$	65.670 66.429 71.359	65.773 67.525 71.709	58.964 60.730 70.805	65.560 65.030 68.844	44.536 46.421 68.704	35.240 39.951 68.751

Dialog Generation

Table 3: Fine-tuning with DP-Adam yields high quality chit-chat dialog generation models.

Model	DP Guarantee	Gaussian DP	Compose	Metrics			
	Di Guarantee	+CLT	tradeoff func.	F1 ↑	Perplexity \downarrow	Quality (human) \uparrow	
	$\epsilon = 3$	$\epsilon \approx 2.54$	$\epsilon pprox 2.73$	15.90	24.59	-	
GPT-2	$\epsilon = 8$	$\epsilon pprox 6.00$	$\epsilon pprox 7.13$	16.08	23.57	-	
	non-private	-	-	17.96	18.52	-	
GPT-2-medium	$\epsilon = 3$	$\epsilon \approx 2.54$	$\epsilon pprox 2.73$	15.99	20.68	-	
	$\epsilon = 8$	$\epsilon pprox 6.00$	$\epsilon pprox 7.13$	16.53	19.25	-	
	non-private	-	-	18.64	15.40	-	
DialoGPT-medium	$\epsilon = 3$	$\epsilon \approx 2.54$	$\epsilon pprox 2.73$	17.37	17.64	2.82 (2.56, 3.09)	
	$\epsilon = 8$	$\epsilon pprox 6.00$	$\epsilon pprox 7.13$	17.56	16.79	3.09 (2.83, 3.35)	
	non-private	-	-	19.28	14.28	3.26 (3.00, 3.51)	
HuggingFace (ConvAI2 winner)	non-private	-	-	19.09	17.51	-	
HuggingFace (our implementation)	non-private	-	-	16.36	20.55	3.23 (2.98, 3.49)	
Reference	-	-	-	-	-	3.74 (3.49, 4.00)	

Summary

- Large LMs can be **effectively** fine-tuned under DP if hyperparameters and the fine-tuning objective are set right
- Full fine-tuning large LMs under DP can be memory **efficient**
- Better and **larger** pretrained models yield improved private fine-tuning results

Thank you!

Q & A