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Overview

• Codex – GPT-3 based language model
• Scalable sequence prediction

• Writes python code given docstrings.

• Codex powers the GIThub co-pilot.

• Solves 29% of the problems with 1 sample per problem.

• 70% with 100 samples per problem.

• Solves very simple problems
• Eg., increment a list etc.,

• BTW, Codex is deprecated as of last week ! GPT3.5 seems to have 
included that model or improved on that considerably.



Scalable Sequence Prediction models

• Use cases in
• NLP
• Computer vision
• Biology
• Audio/Speech
• Multi-modal

• With this -- > in code generation as well
• More natural fit due to "Coding Language"!
• But has to be very correct - more responsibility unlike a natural language 

sentence.



Language Models for code

• Even GPT3 produced some code
• Who knows if they were correct

• GPT3.5 - experiment Demo
• It did not work with Incoder
• GPT3.5 talked to me on how to run the code !

• Is it due to Reasoning or it is a Large compressed Intelligent semantic 
based search engine ?
• Much like any math equation representing a wealth of data related 

information in one equation
• A neural network model with 170Billion parameters obviously will have lots 

more data ?



Problem Solving Capability



How it works ?

• Docstrings --> code

• Code correctness using "Humanval" benchmark

• Humanval
• 164 hand written programs with unit tests

• Assess – language comprehension, algorithm, math, interview (?)

• Each problem function, docstring, body, tests,

• 7.7 tests per problem.



How it works ? - One sample

• To solve a problem
• Generate samples Let us say "1"

• Check if it passes the humanval unit tests



More Samples

• No one gets the code right first time !

• So, they created 100 samples (some of which could be wrong !)
• Rationale seems right ?

• But it works ! With that Codex-S solves ie. Generates one correct 
function for 77.5 % of the problems.

• Thoughts !!
• So a programmer model will be – give some input to codex-S, wait for 100 

samples, wait for tests, pick the correct one ? Practical? Fast?

• So, now they move to highest mean log-probability (sample that has 
one!) now it solves 44.5 % of the problems !



Evaluation Framework – should be right !!

• BLEU – in natural language completion (or samples) match with the 
human sentence and has a value of 0 to 1.

• Programs cannot be verified that way !!

• Sample is correct ONLY WHEN IT WORKS ! Ie., functional correctness.
• What about - non-functional correctness, reliability, scalability, readability, 

enhancibility, performance, stability etc., ?
• Humans do test driven development !! (I test every 10 lines of code as I 

develop)

• Paper introduces a new metric pass@k metric. (what is the merit of 
this metric ?)

• Humanval benchmark described in slide 6.



Evaluation Framework – should be right !!

• Pass@k metric !
• Generate "k" samples

• Find out which all passes the unit tests

• Fraction of the "k" samples that passes is reported.

• Expectation of that random variable is pass@k

• There is a math way they calculate (not described here! But described in the 
appendix of the paper)
• Generate "n" samples >= k

• Correct samples = 'c'

• Pass@k = function_of(n, c, k) --> returns a value between 0 and 1.

• Ie., probability atleast one model is correct.
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Evaluation Framework – how will you test ?

• Random (may be correct !) code is generated by some hidden 
blackbox that is nuclear packed with billions of bits of data from internet !
• Is it trustworthy ?
• Is it secure ?
• Hope data has been cleaned thoroughly in the training set !

• They use "gvisor" a container framework for isolating this process.
• Firewall
• Control groups
• Resource limitation
• Absolutely no visibility of anything outside
• Aha.. How will you test client/server programs then ? Wont we generate code for 

them ?



Codex – fine tuning

• Codex is fine tuned GPT model with 12B parameters.
• Same model parameters as GPT.

• Better tokenizer to accommodate coding languages (eg., large white spaces)

• White spaces of different lengths reduced tokens by 30%

• Nucleus Sampling (top p=0.95)

• Much better performance than GPT



Data Cleaning

• Data Collection – cleaning, filtering
• Remove the following files:

• No automatic generated code (eg., django or oracle sql query in c or python )

• Line length > 100

• Lower percentage of alphanumerics

• Everything similar to what we probably do in a spam email or bad code or corruptions 
etc.,

• Be ultra careful here !















APPS - (competitive problem solving) dataset

• 5000 training, 5000 test/evaluation

• Each example includes unit tests

• Competitive problems is full program although core is one function

• Metrics used for evaluation:
• Full correctness/partial correct as well (coding competition test cases only 

some may pass)'

• Timeouts may happen.



APPS - Results



Codex-S supervised fine-tuning

• Use functional code from competitive programming website, 
continuous integration website.

• 10000 from competitive websites, 40000 from CI websites.

• Filter those that works well.

• The problems are collected in the same format problem in 
docstring, solutions.

• Codex-S performed better, but the pass@k rates for k>1 required 
higher temperatures than codex. (Obviously due to codex-S having 
more narrower/crisper definitions).



Codex-S results



Codex-S results



Limitations – more components ie. functions



Limitations

• Sums of math – binding attributes to objects



Limitations

• Over-reliance - has subtle bugs

• Mistakes in training code generate bad code

• Security issues

• For developers
• Reduce cost of producing s/w

• Can focus on value add stuff (say design docs)

• Security implications – huge !

• IP issues – who owns the code if same code generated by same s/w in 
two companies ?



Future work

• Paper lists
• Quantify economic value
• Documentation/testing practice
• Impact of code generation tools metrics (time saved etc.)
• More language grammars insights (?)

• My observations
• Where is the reasoning here ?
• No wonder having billions of parameters returns better results due to huge 

amounts of compressed data inside the model.
• Dynamic code generation library for simple functions …, testing etc. Are more 

complex.. More work !
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