Evaluation of Large Language
Models Trained on Code

Srinivasan Viswanathan
Sbv5221@psu.edu

Overview

* Codex — GPT-3 based language model

* Scalable sequence prediction

* Writes python code given docstrings.

* Codex powers the GIThub co-pilot.
Solves 29% of the problems with 1 sample per problem.
70% with 100 samples per problem.

Solves very simple problems
* Eg.,increment a list etc.,

 BTW, Codex is deprecated as of last week | GPT3.5 seems to have
included that model or improved on that considerably.

Scalable Sequence Prediction models

* Use cases In
 NLP
* Computer vision
* Biology
* Audio/Speech
* Multi-modal

* With this -- > in code generation as well

* More natural fit due to "Coding Language"!

* But has to be very correct - more responsibility unlike a natural language
sentence.

Language Models for code

* Even GPT3 produced some code
 Who knows if they were correct

* GPT3.5 - experiment Demo
e |t did not work with Incoder
e GPT3.5 talked to me on how to run the code !

* Is it due to Reasoning or it is a Large compressed Intelligent semantic
based search engine ?

* Much like any math equation representing a wealth of data related
information in one equation

* A neural network model with 170Billion parameters obviously will have lots
more data ?

Problem Solving Capability

Codex and Codex-S Performance

0.8 9 — GPT-3 pass@1
- Codex pass@1
06 —— Codex-S pass@1
' —— Codex-5 mean logp reranking

9 - (Codex-S oracle reranking
o
~ 0.4 -
W
&

0.2

0.0 - J

IIIII L) L] IIIIIII L] L] IIIIIII L]

R orEEE L |
10° 10° 107 10° 10° 101°
Non-embedding parameters

Figure 1. Pass rates of our models on the HumanEval dataset as a

How it works ?

e Docstrings --> code
e Code correctness using "Humanval" benchmark

* Humanval
* 164 hand written programs with unit tests
* Assess— language comprehension, algorithm, math, interview (?)
e Each problem function, docstring, body, tests,
» 7.7 tests per problem.

How it works ? - One sample

* To solve a problem

* Generate samples Let ussay "1"
* Check if it passes the humanval unit tests

Problem solving with one sample

Approach: to solve a problem, generate samples and check if any pass the unit tests

With one sample:

Codex (12 billion parameters) IO 28.8% ERJEIIELE
Codex (300 million parameters) JEITEIN 13.2% WS EIIENE
GPT-J (6 billion parameters) solves PRARSS of problems

Other GPT models solve ~ 0% B

To improve performance, Codex is fine-tuned on correctly implemented functions

37.7%

solves

Codex-S (12 billion parameters of problems

More Samples

* No one gets the code right first time !

* So, they created 100 samples (some of which could be wrong !)
e Rationale seems right ?

e But it works ! With that Codex-S solves ie. Generates one correct
function for 77.5 % of the problems.

* Thoughts !!

* So a programmer model will be — give some input to codex-S, wait for 100
samples, wait for tests, pick the correct one ? Practical? Fast?

* So, now they move to highest mean log-probability (sample that has
one!) now it solves 44.5 % of the problems |

Evaluation Framework —should be right !

 BLEU — in natural language completion (or samples) match with the
human sentence and has a value of O to 1.

* Programs cannot be verified that way !!

 Sample is correct ONLY WHEN IT WORKS ! le., functional correctness.

 What about - non-functional correctness, reliability, scalability, readability,
enhancibility, performance, stability etc., ?

 Humans do test driven development !! (I test every 10 lines of code as |
develop)

e Paper introduces a new metric pass@k metric. (what is the merit of
this metric ?)

e Humanval benchmark described in slide 6.

Evaluation Framework —should be right !

* Pass@k metric |
* Generate "k" samples
* Find out which all passes the unit tests
* Fraction of the "k" samples that passes is reported.
* Expectation of that random variable is pass@Kk

* Thereis a math way they calculate (not described here! But described in the
appendix of the paper)

* Generate "n" samples >=k
e Correct samples ="'c'
e Pass@k = function_of(n, c, k) --> returns a value between 0 and 1.

* le., probability atleast one model is correct.

Evaluation Framework —should be right !

* Pass@k metric |
* Generate "k" samples
* Find out which all passes the unit tests
* Fraction of the "k" samples that passes is reported.
* Expectation of that random variable is pass@Kk

* Thereis a math way they calculate (not described here! But described in the
appendix of the paper)

* Generate "n" samples >=k
e Correct samples ="'c'
e Pass@k = function_of(n, c, k) --> returns a value between 0 and 1.

* le., probability atleast one model is correct.

Evaluation Framework — how will you test ?

 Random (may be correct !) code is generated by some hidden
blackbox that is nuclear packed with billions of bits of data from internet !
e |s it trustworthy ?
* |sit secure ?
* Hope data has been cleaned thoroughly in the training set !

* They use "gvisor" a container framework for isolating this process.

* Firewall

e Control groups

* Resource limitation

* Absolutely no visibility of anything outside

* Aha.. How will you test client/server programs then ? Wont we generate code for
them ?

Codex —fine tuning

e Codex is fine tuned GPT model with 12B parameters.
 Same model parameters as GPT.

Better tokenizer to accommodate coding languages (eg., large white spaces)
White spaces of different lengths reduced tokens by 30%

Nucleus Sampling (top p=0.95)

Much better performance than GPT

Data Cleaning

e Data Collection — cleaning, filtering

 Remove the following files:
* No automatic generated code (eg., django or oracle sql query in c or python)
* Line length> 100
* Lower percentage of alphanumerics

* Everything similar to what we probably do in a spam email or bad code or corruptions
etc.,

* Be ultra careful here !

Prompting to compute pass@k

Each HumanEval problem is assembled into a prompt

signature
def incr_list(1:
"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
(2 3. 4] docstring
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])

function header

’

(6. 4. 6, 3. 4.4, 10, 1, 124]

return [1 + 1 for i in 1] Codex 12B: pass@1 = 0.9

Sampling continues until one of the following tokens is encountered:

' II\II.nI::laSS ' | ‘ II\III.I}-:'lrint ‘

(otherwise, Codex will keep generating additional functions and statements)

Nucleus sampling (with top p = 0.95) is used for all sampling evaluation

Multi-function prompts

def encode_cyclic(s: str):

returns encoded string by cycling groups of three character

g
rnn

groups = [s[(3 * i):min((3 % i + 3), len(s))] for i in range((len(s) + 2) // 3)]

groups = [(groupl[1:] + groupl[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

decode_cyclic(s: str):

takes as input string encoded with encode_cyclic function. Returns decoded string.

groups = [s[(3 * i):min{((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]

groups = [(group[-1] + groupl:-11) if len(group) == 3 else group for group in groups]
return "".join(groups)

Codex 12B: pass@ 1 = (0.005

Loss scaling

Language model losses appear to follow a (Kaplan et al., 2020)

Similarly, plot Codex test loss on a held-out val set of GitHub corpus:

Codex loss scaling

\\ [Fre

N —0.13
(\ 592 % 107)

test loss

Codex models of

[r—

different capacities

10° 10° 107 108 10° 10%°
non-embedding parameters, N

Takeaway: Codex finetuning appears to follow a power law with model size

Sampling temperature Pass Rate vs Model Size

Influence of temperature on pass @k vs k 0.7 - pass@1 (T*=0.2)
044 — T1-00 pass@100 (T*=0.8)
T=D.2 Best temperature to 0.6 -
— = use depends on &
< 034 1o06 =z 0.5 -
® . =0.
% —— T=0.8 — |
3 — T=1.0 © 0.4
= 0.2 T=1.2 &
S 0.3 -
01 0.2
B ' ! oo T Er ! ! oo rER] 0 1 -
10° 10t 102 '
Number of samples, k 0.0 -
lllll L) Ll lllllll Ll T |I|||l| L] L) lllllll L) L] 'Illllll T L Illlll L)
Best temperature for different values of k 105 106 107 108 109 1010
0.8 - . Non-embedding parameters
[} . . .
3 06 - Figure 6. Using the optimal temperatures (0.2 and 0.8 for pass@1
o . .
5 and pass@ 100, we plot these two metrics as a function of model
o . . « q s
E o4 size. Performance appears to scale smoothly as a sigmoid in log-
b parameters.
@
0.2 -
B ' ' L ! ! L
10° 10! 107
Number of samples, &
For larger k, higher temperatures (higher diversity) work better
pass @ k only rewards whether the model generates any solution

Sample Ranking Heuristics

—— Qracle
0.7 4 — Docstring backtranslation
-~ Sum logp
—— Mean logp
0.6 41 —— Random
]
4@ 0.5 A
wn
.
a 0.4
0.3 -
0.2 1

1 ' ! LD | ' ' L L |
10° 101t 102
Number of samples (k)

Figure 7. Model performance in the setting where we can generate
multiple samples, but only evaluate one. We can do better than ran-
domly selecting a sample by choosing the solution with the highest
mean log-probability (red) or with the highest back-translation
score (orange) described in Sec. 5. The blue line represents the
theoretical best performance obtained using an oracle with prior
knowledge of the unit tests.

Related Approaches

Two models in the same vein as Codex:

GPT-Neo (Black et al., 2021)

GPT-J-6B (Wang et al., 2021)

Both are trained on The Pile (8% of which is sourced from GitHub)

GPT-J-6B appears to produce qualitatively reasonable code (Woolf, 2021)

PASS @k
k=10

k = 100

GPT-NEoO 125M
GPT-NEO 1.3B
GPT-NEO 2.7B
GPT-J 6B

0.75%
4.79%
6.41%
11.62%

1.88%
T.47%
11.27%
15.74%

2.97%
16.30%
21.37%
27.74%

TABNINE

2.58%

4.35%

7.59%

Temperatures
GPT-Neo: 0.2, 0.4, 0.8
GPT-J-6B: 0.2, 0.8
Tabnine: 0.4, 0.8

CODEX-12M
CODEX-25M
CODEX-42M
CODEX-85M
CoDEX-300M
CODEX-679M
CoODEX-2.5B
CODEX-12B

2.00%
3.21%
5.06%
8.22%
13.17%
16.22%
21.36%
28.81%

3.62%
7.1%
8.8%

12.81%

20.37%

25.7%

35.42%
46.81%

8.58%
12.89%
15.55%

22.4%
36.27%
40.95%

59.5%
72.31%

x20 fewer parameters

than GPT-J-6B

Codex-12B goes considerably beyond the performance of prior models

APPS - (competitive problem solving) dataset

* 5000 training, 5000 test/evaluation
* Each example includes unit tests

 Competitive problems is full program although core is one function

* Metrics used for evaluation:

 Full correctness/partial correct as well (coding competition test cases only
some may pass)'

* Timeouts may happen.

APPS - Results

Evaluating Large Language Models Trained on Code

Table 2. Finetuned GPT-Neo numbers from the APPS paper referenced above. For Codex-12B, the number of passing programs that
timeout on some test is in the bracket. We used temperature 0.6 for sampling to cover all k in pass @k, so raw pass@ | results could be

improved with lower temperature.

INTRODUCTORY INTERVIEW COMPETITION
GPT-NEO 2.7B RAW PASS@ | 3.90% 0.57% 0.00%
GPT-NEO 2.7B RAW PASS@5 5.50% 0.80% 0.00%

1-SHOT CODEX RAW PASS @]
1-SHOT CODEX RAW PASS@5
1-SHOT CODEX RAW PASS @100
1-SHOT CODEX RAW PASS @ 1000

4.14% (4.33%)

9.65% (10.05%)
20.20% (21.57%)
25.02% (27.77%)

0.14% (0.30%)
0.51% (1.02%)
2.04% (3.99%)
3.70% (7.94%)

0.02% (0.03%)
0.09% (0.16%)
1.05% (1.73%)
3.23% (5.85%)

1-SHOT CODEX FILTERED PASS @ |
1-SHOT CODEX FILTERED PASS @5

22.78% (25.10%)
24.52% (27.15%)

2.64% (5.78%)
3.23% (7.13%)

3.04% (5.25%)
3.08% (5.53%)

Codex-S supervised fine-tuning

* Use functional code from competitive programming website,
continuous integration website.

* 10000 from competitive websites, 40000 from Cl websites.
* Filter those that works well.

* The problems are collected in the same format problem in
docstring, solutions.

* Codex-S performed better, but the pass@k rates for k>1 required
higher temperatures than codex. (Obviously due to codex-S having
more narrower/crisper definitions).

Codex-S results

Supervised Fine-tuning: Results

Codex-S: the influence of model size

Influence of model size: Codex and Codex-S

0.8 1 __. Codex pass@1
Codex pass@100
- Codex-S pass@]
0.6 Codex-S pass @100
~
®
v
Z 0.4
o
0.2 f -
—/ ’,-"I’Codex — Codex-S:
0.0 4 ==——=========-="" - pass@ 1 avg. gain: 6.5%
10° 10° 107 108 10° 10%°

non-embedding parameters

Codex-S beats Codex by 6.5% on pass@ 1 and 15.1% on pass @ 100 on average

0.8

0.7

0.6

0.5

pass rate

0.4

0.3

0.2

Codex-S: the influence of model size

Sample ranking heuristics: Codex and Codex-S

— == Codex oracle
Codex mean logp
—=—- Codex random
——— Codex-S oracle
Codex-S mean logp
—— Codex-S random

———

i

A [
EUYAY, "
="V AR
L] |]

10° 10! 102
number of samples,

Average benefit of mean log probability is 2% higher for Codex-S than Codex

Codex-S results

Comparing training strategies on different model sizes on HumanEval

Codex and Codex-S performance (temperature 0.8)

0.8 4 GPT-3 pass@1 Codex-S solves 77.5% by
Codex pass@] selecting the sample among
—— Codex-S pass@1 100 passing the unit tests
0.6 7| — Codex-S mean logp reranking
Qo ~——— Codex-S oracle reranking Codex-S solves 44.5% by
S reranking 100 samples via
§ 0.4 7 mean logp
a-
0.2 4
0.0 4
lll'l L]) |||||'|I] T |l||l|| L] L) lll'll'l L] L ||||||I L] LI | llllll L)
10° 10° 107 108 10° 1010

Non-embedding parameters

Limitations — more components ie. functions

Synthetic Pass Rate vs Components

0.25 —

0.20 —

0.15 —

0.10 —

Pass rate

0.05 —

1 2 3 < 5 6 7
Number of chained components

Figure 11. Pass rates of Codex-12B samples against the number of
chained components in the synthetically generated docstring. With
each additional component, pass rate drops by roughly a factor of
2-3.

Limitations

e Sums of math — binding attributes to objects

def do_work (x, v, z, w):
"rrAdd 3 to y, then subtract 4
from both x and w. Return the

product of the four numbers. """

t=vyv + 3
u=x - 4
V = Z % W

return v

Limitations

e Over-reliance - has subtle bugs
* Mistakes in training code generate bad code
* Security issues

* For developers
* Reduce cost of producing s/w
e Can focus on value add stuff (say design docs)

e Security implications — huge !

* |P issues —who owns the code if same code generated by same s/w in
two companies ?

Future work

e Paper lists
* Quantify economic value
* Documentation/testing practice
* Impact of code generation tools metrics (time saved etc.)

 More language grammars insights (?)

* My observations
* Where is the reasoning here ?
* No wonder having billions of parameters returns better results due to huge
amounts of compressed data inside the model.
* Dynamic code generation library for simple functions ..., testing etc. Are more
complex.. More work !

	Slide 1: Evaluation of Large Language Models Trained on Code
	Slide 2: Overview
	Slide 3: Scalable Sequence Prediction models
	Slide 4: Language Models for code
	Slide 5: Problem Solving Capability
	Slide 6: How it works ?
	Slide 7: How it works ? - One sample
	Slide 8: More Samples
	Slide 9: Evaluation Framework – should be right !!
	Slide 10: Evaluation Framework – should be right !!
	Slide 11: Evaluation Framework – should be right !!
	Slide 12: Evaluation Framework – how will you test ?
	Slide 13: Codex – fine tuning
	Slide 14: Data Cleaning
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: APPS - (competitive problem solving) dataset
	Slide 22: APPS - Results
	Slide 23: Codex-S supervised fine-tuning
	Slide 24: Codex-S results
	Slide 25: Codex-S results
	Slide 26: Limitations – more components ie. functions
	Slide 27: Limitations
	Slide 28: Limitations
	Slide 29: Future work

