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Background
Although deep learning has revolutionized computer vision, current
approaches have several major problems:

e Typical vision datasets are labor intensive and costly to create while
teaching only a narrow set of visual concepts (Expensive);

 Standard vision models are good at one task and one task only, and
require significant effort to adapt to a new task (Hard to transfer);

* Models that perform well on benchmarks have disappointingly poor
performance on stress tests (Bad at generalization).

@ PennState



Contribution

CLIP (Contrastive Language—Image Pre-training) mitigates the gap
between source domain and other domains, benchmarking
performance and wild test with a cheap and computational efficient
way. --- Amazing zero-shot performance!

1. Collected 400 million image-text pairs from Internet as training
dataset

2. Get the logits via the cosine similarities between the image-text
pairs (metric learning)
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Zero-shot Performance of CLIP
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Although both models have the same accuracy on the Imagellet test set, CLIP's performance is much mare representative of how it will
fare on datasets that measure accuracy in different, non-Imagellet settings. For instance, ObjectMNet checks a madel’s ability to recognize
objects in many different poses and with many different backgrounds inside homes while ImagelNet Rendition and Imagellet Sketch
check a model's ability to recognize more abstract depictions of objects.
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CLIP - Overview
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.
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CLIP - Approach: Natural Language Supervision

Learning perception from supervision contained in natural language,
a.k.a, which text is paired with the image input.

Strengths:
1. Needless of crowd-sourced labeling for image classification.

2. Not only learn a representation but also connects that
representation to language which enables flexible zero-shot
transfer.
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CLIP - Approach: Creating a Sufficiently Large Dataset

Instead of using the existing well-labeled datasets, the authors
collected over 400 million data pair that are available publicly on the
internet. Make it a dataset named WeblmageText (WIT).

To attempt to cover as broad a set of visual concepts as possible, we
search for (image, text) pairs as part of the construction process
whose text includes one of a set of 500,000 queries. Class balance
the results by including up to 20,000 (image, text) pairs per query.
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CLIP - Approach: Selecting an Efficient Pre-Training Method

Training Task: Given N image-text pairs, CLIP is trained to
predict which of the N x N possible (image, text) pairings
across a batch actually occurred.

Method: Learn a multi-modal embedding space by jointly
training an image encoder and text encoder to

maximize the cosine similarity of the image and text
embeddings of the N real pairs in the batch

while minimizing the cosine similarity of the embeddings of
the N? — N incorrect pairings.
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Figure 2. CLIP is much more efficient at zero-shot transfer
than our image caption baseline. Although highly expressive,
we found that transformer-based language models are relatively
weak at zero-shot ImageNet classification. Here, we see that it
learns 3x slower than a baseline which predicts a bag-of-words
(BoW) encoding of the text (Joulin et al., 2016). Swapping the
prediction objective for the contrastive objective of CLIP further
improves efficiency another 4x.




CLIP - Approach: Selecting an Efficient Pre-Training Method

 Pseudo code

# image_encoder - ResNet or Vision Transformer # joint multimodal embedding [n, d_e]

# text_encoder - CBOW or Text Transformer I_e = 12_normalize(np.dot(I_f, W_i), axis=1)

# I[n, h, w, c] - minibatch of aligned images T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed # scaled pairwise cosine similarities [n, n]

# W_t[d_t, d_e] - learned proj of text to embed logits = np.dot(I_e, T_e.T) * np.exp(t)

# t - learned temperature parameter
# symmetric loss function

# extract feature representations of each modality labels = np.arange(n)

I_f = image_encoder(I) #[n, d_i] loss_i = cross_entropy_loss(logits, labels, axis=0)

T_f = text_encoder(T) #[n, d_t] loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
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CLIP - Approach: Choosing and Scaling a Model

Architectures for the image encoder:
1. ResNet-50
2. Vision Transformer

Architectures for the text encoder:
Basic Transformer

CLIP’s performance to be less sensitive to the capacity of the text
encoder.

@ PennState



CLIP - Approach: Training

Image encoder:

ResNet-b0x4, ResNet-b0x16, ResNet-50x64, ResNet-101, ViT-B/32, ViT-L/14.
Epochs: 32

Optimizer: AdamW

Initialization: Grid search

Mini-batch: 32768 (the larger the better for contrastive learning)

Training time:

ResNet-50x64: 592 V100 GPUs for 18 days

ViT-L/14: 256 V100 GPUs for 12 days
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CLIP - Experiment: Zero-shot Transfer

Prompt Engineering:

1. Mismatch between the name and the
Image.

2. Polysemy

3. the prompt template “A photo of a {label}.”
improves the baseline of only using the
label text.
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Figure 5. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet-50 features on 16 datasets, including ImageNet.




CLIP - Experiment: Zero-shot Transfer
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Figure 7. The data efficiency of zero-shot transfer varies
widely. Calculating the number of labeled examples per class
a linear classifier on the same CLIP feature space requires (0 match
the performance of the zero-shot classifier contextualizes the ef-
fectiveness of zero-shot transfer. Values are estimated based on
log-linear interpolation of 1, 2, 4, 8, 16-shot and fully supervised
results. Performance varies widely from still underperforming a
one-shot classifier on two datasets to matching an estimated 184
labeled examples per class.
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Figure 6. Zero-shot CLIP outperforms few-shot linear probes.
Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval
suite. The 20 datasets with at least 16 examples per class were
used in this analysis.



CLIP - Experiment: Zero-shot Transfer
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Figure 8. Zero-shot performance is correlated with linear
probe performance but still mostly sub-optimal. Comparing
zero-shot and linear probe performance across datasets shows a
strong correlation with zero-shot performance mostly shifted 10 to
25 points lower. On only 5 datasets does zero-shot performance
approach linear probe performance (<3 point difference).
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Figure 9. Zero-shot CLIP performance scales smoothly as a
function of model compute. Across 39 evals on 36 different
datasets, average zero-shot error is well modeled by a log-log lin-
ear trend across a 44x range of compute spanning 5 different CLIP
models. Lightly shaded lines are performance on individual evals,
showing that performance 1s much more varied despite the smooth
overall trend.




CLIP - Experiment: Representation Learning
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Zero-shot CLIP is much more robust to distribution shift than
standard ImageNet models.

ImageNet Zero-Shot

100 ResNet101 CLIP A Score

Dataset Examples

== |deal robust model (y= % g m——

95 - Zero-Shot CLIP -7

Standard ImageNet training -
90 1 ©» Exsiting robustness techniques ’," ( ImageNet

76.2 76.2 0%

ImageNetV2 64.3 701 +5.8%

ImageNet-R 377 889 +51.2%

ObjectNet | 326 723  +39.7%

)

ImageNet (& | f() 25.2 60.2 35.0%
Sketch K‘/ \.,/) % \(/ - . T

2.7 771 +74.4%

Average on 7 natural distribution shift datasets (top-1, %)

20 L) L) v Al LS T
65 70 75 80 85 S0 95 100
Average on class subsampled ImageNet (top-1, %)

@ PennState




Adapt to ImageNet
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Figure 14. While supervised adaptation to ImageNet increases ImageNet accuracy by 9.2%, it slightly reduces average robustness.
(Left) Customizing zero-shot CLIP to each dataset improves robustness compared to using a single static zero-shot ImageNet classifier
and pooling predictions across similar classes as in Taori et al. (2020). CLIP models adapted to ImageNet have similar effective robustness
as the best prior ImageNet models. (Right) Details of per dataset changes in accuracy for the two robustness interventions. Adapting to
ImageNet increases accuracy on ImageNetV2 noticeably but trades off accuracy on several other distributions. Dataset specific zero-shot
classifiers can improve accuracy by a large amount but are limited to only a few datasets that include classes which don’t perfectly align
with ImageNel categories.
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CLIP - Limitations

1. CLIP struggles on more abstract or systematic tasks such as
counting the number of objects in an image and on more
complex tasks such as predicting how close the nearest car is Iin
a photo.

2. CLIP also still has poor generalization to images not covered in its
pre-training dataset.

3. CLIP’s zero-shot classifiers can be sensitive to wording or
phrasing and sometimes require trial and error “prompt
engineering” to perform well.
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Broader impacts

1 . Potential social impacts, such as privacy violations and biases in
decision-making.

2. Future application on a wide range of tasks.

Reflection

1. Nature Language Supervision is a powerful high-dimensional supervision
signal, which can reduce ambiguity and be easily transferable.

2. Larger queries set will further enhance the model performance.

3. CLIP transforms the classification task into retrieval task, which makes it be
efficient.
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Thanks for listening

Any Questions?
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