CSE 587: Deep Learning for Natural Language Processing

Lecture 4. RNNs, Sequence-to-Sequence, Attention

Rui Zhang Spring 2023

Outline - Key Concepts

NLP

Sequence-to-Sequence Tasks Sentence Representation

ML

Recurrent Neural Networks Teacher Forcing Greedy Decoding Attention

Natural Language is Sequential

Natural Language is Sequential

- words are sequences of characters.
- sentences are sequences of words.
- paragraphs/documents/dialogues are sequences of sentences.

Natural Language is Sequential

We need to model the **order** and **dependency** in sequential data! The Long-Distance Dependency problem:

What is the referent of "they"?

- The city councilmen refused the demonstrators a permit because <u>they</u> feared violence.
- The city councilmen refused the demonstrators a permit because <u>they</u> advocated violence.

(from Winograd Schema Challenge: http://commonsensereasoning.org/winograd.html)

Natural Language is Sequential

We need to model the **order** and **dependency** in sequential data! The Long-Distance Dependency problem:

What is the referent of "they"?

- <u>The city councilmen</u> refused the demonstrators a permit because <u>they</u> feared violence.
- The city councilmen refused <u>the demonstrators</u> a permit because <u>they</u> advocated violence.

(from Winograd Schema Challenge: http://commonsensereasoning.org/winograd.html)

Recurrent Neural Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks - Equation

Parameter Tying

Parameters are shared! Derivatives are accumulated.

RNN Variants

Bidirectional RNN

Multilayer RNN

Long Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Bidirectional RNN

One RNN from left to right; The other RNN from right to left.

Multilayer RNN / Deep RNN

Adding another layer of RNNs on top of the outputs of lower-layer RNNs.

https://d2l.ai/chapter_recurrent-modern/deep-rnn.html

Long Short Term Memory (LSTM)

Use several "gates" to control adding or removing information.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs as Sentence Encoders

RNNs can be used to **Encode** Sentence, i.e., we can get an representation of the sentence.

- You can use the last hidden state as the representation of the sentence.
- You can use the average of all the hidden states as the representation of the sentence.

Sentence Representation

Then, you can use the the sentence representation for

- Sentence Classification
- Paraphrase Identification
- Semantic Similarity/Relatedness
- Entailment
- Retrieval and Ranking

Semantic Similarity/Relatedness

- SICK (Sentences Involving Compositional Knowledge) Dataset (<u>Marelli et al.</u> <u>2014</u>).
- The relatedness score ranges from 1 to 5.
- <u>Hugging Face dataset viewer</u> for SICK.

😕 Hugg	ging Face	Q Search mod	lels, datasets, use	ers 🖗 M	odels 🗏 Data	sets 📓 Spaces	🗂 Docs 🛛 🚔 Solutio	ns Pricing $ \equiv$	Log In Sign Up
Datas	ets: sick	🗈 🗢 like 0							
asks: nat	tural-language-inf	erence Task C	ategories: text-cla	assification Language	s: en Multiling	uality: monolingua	Size Categories: 1K <n·< td=""><td><10K Licenses: CC-BY</td><td>NC-SA-3-0</td></n·<>	<10K Licenses: CC-BY	NC-SA-3-0
anguage C	reators: crowds	ourced Annota	ations Creators:	rowdsourced Source	Datasets: extende	ed image-flickr-8k	extended semeval2012-sts-n	nsr-video	
Datas Subset	et Preview				S	plit			
default					× (train			~
id (string)	sentence_A (string)	sentence_B (string)	label (class label)	relatedness_score (float)	entailment_AB (string)	entailment_BA (string)	sentence_A_original (string)	sentence_B_original (string)	sentence_A_dataset (string)
L	A group of kids is playing in a yard and an old man is standing in the background	A group of boys in a yard is playing and a man is standing in the background	neutral	4.5	A_neutral_B	B_neutral_A	A group of children playing in a yard, a man in the background.	A group of children playing in a yard, a man in the background.	FLICKR
	A drawn of	A droup of					A drown of childron	A group of shildron	

Textual Entailment

Entailment: if A is true, then B is true Contradiction: if A is true, then B is not true Neutral: cannot say either of the above

e.g., The Stanford Natural Language Inference (SNLI) Corpus

Text	Judgments	Hypothesis
A man inspects the uniform of a figure in some East Asian country.	contradiction C C C C C	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats playing on the floor.
A black race car starts up in front of a crowd of people.	contradictior C C C C C	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment E E E E E	Some men are playing a sport.
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.

Output can be a sequence too

Input X	Output Y	Task
Text Text Text	Label Linguistic Structure Text	Text Classification (e.g., Sentiment Analysis) Structured Prediction (e.g., Part-of-Speech Tagging) Text Generation (e.g., Translation, Summarization)
Sentimer	nt Analysis	

• I really like this movie. -> Positive, Neutral, Negative

Part-of-Speech Tagging:

• Time flies like an arrow. -> N V IN DET N

Machine Translation

• Time flies like an arrow. -> 时间飞逝如箭。

Sequence-to-Sequence

- Input is sequence and output is also a sequence
- Use an encoder to encode input, and an decoder to decode output.
- So it is also known as **Encoder-Decoder** Model.
- Many problems can be casted as a sequence-to-sequence learning task.

Figure 1: Our model reads an input sentence "ABC" and produces "WXYZ" as the output sentence. The model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the

Sutskever et al. 2014

Training: Teacher Forcing

- During training, we use the original output sequence (token labels) is fed into the decoder.
- This is called **Teacher Forcing**.
- Suppose your training data has one example of (ABC<EOS>, WXYZ<EOS>).
- Calculate the loss for five decoding time steps, and add them together as the final loss function
 - ABC<EOS> W
 - ABC<EOS>W X
 - ABC<EOS>WX Y
 - ABC<EOS>WXY Z
 - ABC<EOS>WXYZ <EOS>

Training a Neural Machine Translation system

https://people.cs.umass.edu/~miyyer/cs685/slides/05-transformers.pdf

Prediction

- After the model is trained, we run inference or prediction on test and dev set.
- During prediction, we need to use the **predicted** token from the previous time step as the current input to the decoder.

Neural Machine Translation (NMT)

Decoding: Greedy (Beam Search with Size = 1)

- There are different ways of decoding (we will talk about this more in NLG.)
- The simplest decoding algorithm is greedy, i.e., beam search with size=1.

https://lorenlugosch.github.io/posts/2019/02/seq2seq/

Sequence-to-Sequence Applications

Many problems can be casted as sequence-to-sequence learning tasks.

Input	Output	Task
Structured Data	NL Description	Data-to-Text Generation
Source Language	Target Language	Machine Translation
Long Document	Short Summary	Summarization
Question	Structured Meaning Representati	on Semantic Parsing
Dialog Utterance	Response E	Dialogue Response Generation
Image	Text	Image Captioning
Speech	Transcript	Speech Recognition

Sentence Representation from Encoder

We only feed the last hidden state of encoder to the decoder. This means the meaning of the whole sentence is loaded into the single vector. Can use multiple vectors from the encoder during decoding?

https://www.guru99.com/seq2seq-model.html

Attention

In Machine Translation, at each step of decoding, the decoder should focus on different parts of the words, with different amounts of "attentions".

- Each hidden state of the encoder is a representation of a input word.
- The decoder will look at all the encoder hidden states.
- It computes "attention weights", and use this to perform a linear combination of encoder hidden states.

Figure 1: The graphical illustration of the proposed model trying to generate the *t*-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

Calculate Attention

- Use "query" vector (decoder state) and "key" vectors (all encoder states)
- For each query-key pair, calculate weight
- Normalize to add to one using softmax

Calculate Attention

- Combine together value vectors (usually encoder states, like key vectors) by taking the weighted sum.
- Use this in any part of the model you like, e.g., predicting the next word.

Attention Visualization

Bahdanau et al. 2015

Attention Score Functions

x in the encoder hidden state (key), h is the decoder hidden state (query)

Additive Multilayer Perceptron / Feedforward Neural Network (<u>Bahdanau et al.</u> <u>2015</u>)

$$a(\boldsymbol{x}, \boldsymbol{h}) = \boldsymbol{v}^{\top} \tanh(\boldsymbol{W}[\boldsymbol{x}, \boldsymbol{h}])$$

Bilinear (Luong et al. 2015)

$$a(\boldsymbol{x}, \boldsymbol{h}) = \boldsymbol{x}^{\top} \boldsymbol{W} \boldsymbol{h}$$

Attention Score Functions

x in the encoder hidden state (key), h is the decoder hidden state (query)

Dot Product (Luong et al. 2015)

$$a(\boldsymbol{x}, \boldsymbol{h}) = \boldsymbol{x}^{\top} \boldsymbol{h}$$

Scaled Dot Product (Vaswani et al. 2017)

$$a(\boldsymbol{x}, \boldsymbol{h}) = \frac{\boldsymbol{x}^{\top} \boldsymbol{h}}{\sqrt{|\boldsymbol{h}|}}$$

Self Attention

Attention within the encoder itself.

The FBI is chasing a criminal on the run.									
The FBI is chasing a criminal on the run.									
The	FBI	is chasing a criminal on the run.							
The	FBI	is chasing a criminal on the run.							
The	FBI	is chasing a criminal on the run.							
The	FBI	is	chasing	a	criminal o	n the	run.		
The	FBI	is	chasing	a	criminal	on th	ne rur	1.	
The	FBI	is	chasing	a	criminal	on	the r	un.	
The	FBI	is	chasing	a	criminal	on	the	run.	
The	FBI	is	chasing	a	criminal	on	the	run	

Cheng et al., 2016

Attention in Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Attention in Speech Recognition

Listen, Attend and Spell

