
CSE 587: Deep Learning for Natural
Language Processing

Lecture 3. Neural Networks and Backpropagation

Rui Zhang
Spring 2023

1Many Slides from CS224n

Outline - Key Concepts
NLP

N/A
ML

Neural Networks
Forward Propagation
Gradient Descent
Backpropagation
Computational Graph
Optimizers

2

Neural Networks

3

A Neuron
A neuron is the fundamental building block of neural networks.
e.g., a neuron with sigmoid function

4

Two layer neural networks

5

Activation Functions

6

Leaky ReLU

How to train two-layer Perceptron?
Forward propagation:

Backward propagation:

7

How to train two-layer Perceptron?
Forward propagation: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using the current
set of weights. The output is the prediction of current weights.

Backward propagation:

8

How to train two-layer Perceptron?
Forward propagation: In this phase, the inputs for a training instance are fed into the neural
network. This results in a forward cascade of computations across the layers, using the current
set of weights. The output is the prediction of current weights.

Backward propagation: The main goal of the backward phase is to learn the gradient of the
loss function with respect to the different weights by using the chain rule of differential
calculus. The weights are just adjusted based on error.

9

Forward propagation

We use the sigmoid activation
function which introduces
better non-linearity:

10

Forward propagation

11

Forward propagation

12

Forward propagation

13

Forward propagation - Compact Form

14

Beyond two layers: multilayer neural networks
Why not add more and more layers to learn more complex decision boundaries?

15

Discriminative Model
The discriminative model is parameterized by

16

Discriminative Model Objective Function
The discriminative model is parameterized by

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of

17

Discriminative Model Objective Function
The discriminative model is parameterized by

We often use negative log likelihood over training data as our objective function
or loss function. It is a function of

We then optimize the parameters to minimize the loss. Better model has lower loss

18

Optimize Objective Function by Gradient Descent
Calculate the gradient of the loss function with respect to the parameter

Update by moving a small step in the gradient direction to decrease the loss

 is the learning rate

19

Gradient Descent

20

Gradient Descent
The key operation in gradient descent is to calculate the gradient.

21

Gradient of univariate scalar-valued functions

22

Gradient of multivariate scalar-valued functions

23

Gradient of multivariate vector-valued functions: Jacobian Matrix

24

Example Jacobian: Elementwise activation Function

25

Other Jacobians

Left as exercise. Will be used later.

26

Chain Rule
Chain Rule tells us how to calculate gradients of composite functions.

27

Example

28

Calculate for the following feed-forward neural network.

Example

29

Calculate

Example

30

Calculate

Example
Suppose we now want to compute

Using the chain rule again:

31

The same! Let’s avoid
duplicated computation …

Example
Suppose we now want to compute

Using the chain rule again:

32

Example
How to compute , where and

n outputs, nm inputs, by definition, the Jacobian is

33

Example
Now we can calculate of shape

34

Shape Convention
The shape of the parameter is

By definition of Jacobian, 1 output, nm inputs, so the shape of is

To make it more convenient for make gradient update, we use the
shape convention: the shape of the gradient is the shape of the parameters!

35

Example
For shape convention, we reshape , so it has the same shape as

36

Example
For shape convention, we reshape , so it has the same shape as

A more direct way: compute the outer product of and
 and this directly makes the shape

37

Backpropagation
We use gradient descent to optimize the parameters in neural networks.

The key question: How can we efficiently calculate the gradients in neural
networks (or any computational graph)?

The key intuition: View neural networks (or any computational graph) as
compositions of functions and use chain rules to calculate the gradient.

This is Backpropagation = Gradient Descent + Chain Rule

38

Computation Graph
In software library, neural networks are implemented as Computation Graph (CG).

39

Forward Propagation in CG
In software library, neural networks are implemented as Computation Graph (CG).

40

Backpropagation in CG
In software library, neural networks are implemented as Computation Graph (CG).

41

Backpropagation avoids duplicated computation
Backpropagation follows the computation graph in reverse order, so you avoid
dupdated computation.

42

Backpropagation: Single Node
Node receives an upstream gradient.
Each node has a local gradient.
Goal is to pass on the correct downstream gradient.
By Chain Rule: downstream gradient = upstream gradient x local gradient.

43

Backpropagation: Multiple Inputs
With multiple inputs, each input has a local gradient.

44

Backpropagation: Multiple Outputs
If a node has multiple outgoing edges during forward propagation, we sum the
gradients during the backpropagation.

45

Example

46

Example

47

Example

48

Example

49

Example

50

Example

51

Example

52

Node Intuitions
+ “distributes” the upstream gradient to each summand

53

Node Intuitions
+ “distributes” the upstream gradient to each summand
max “routes” the upstream gradient

54

Node Intuitions
+ “distributes” the upstream gradient to each summand
max “routes” the upstream gradient
* “switches” the upstream gradient

55

Backpropagation in General Computation Graph
● F-prop: visit nodes in topological sort

order - Compute value of node given
predecessors.

● B-prop:
○ initialize output gradient = 1
○ visit nodes in reverse order:

Compute gradient wrt each node
using gradient wrt successors

56

AutoDiff: Automatic Differentiation
The gradient computation can be automatically inferred from the symbolic
expression of the fprop.

Each node type needs to know how to compute its output and how to compute the
gradient wrt its inputs given the gradient wrt its output.

57

Check Your Implementation with Numeric Gradient
Following the definition of gradient:

Use a very small h to compute this value numerically.

Useful for checking your implementation.

58

Optimizers
Once we calculate the gradient with respect to the objective function, we optimize
objective function by gradient descent.

The very basic one is standard gradient descent. But there are many other
choices of optimizers:
● Batch Gradient Descent
● Stochastic Gradient Descent (SGD)
● Mini-batch Gradient Descent
● SGD with Momentum
● Nesterov accelerated gradient
● Adagrad
● Adadelta
● RMSProp
● Adam; AdamW (most commonly used)
● Adafactor 59

Batch Gradient Descent

60

Old ParametersNew Parameters Learning Rate Gradient

Mini-batch Gradient Descent

61

Gradient for a batch of training examples; batch size n

Stochastic Gradient Descent (SGD)

62

Gradient for each training example

SGD with Momentum

63

Momentum parameter, usually 0.9 or a similar value

Nesterov Accelerated Gradient (NAG)

64

calculating the gradient not w.r.t. to our current
parameters θ but w.r.t. the approximate future
position of our parameters

Nesterov Accelerated Gradient (NAG)

65

calculating the gradient not w.r.t. to our current
parameters θ but w.r.t. the approximate future
position of our parameters

Momentum
● first computes the current gradient (small blue

vector)
● then takes a big jump in the direction of the

updated accumulated gradient (big blue vector)
NAG

● first makes a big jump in the direction of the
previous accumulated gradient (brown vector)

● measures the gradient and then makes a correction
(red vector)

● results in the complete NAG update (green vector).

Adagrad
Adagrad adapts the learning rate to the parameters: larger updates for
infrequent parameters, smaller updates for frequent parameters.

It uses a different learning rate for every parameter θi at every time step t,

66

A diagonal matrix where each
diagonal element is the sum of the
squares of the gradients w.r.t. θi up
to time step t

smoothing term that avoids division
by zero

Adagrad
Adagrad adapts the learning rate to the parameters: larger updates for
infrequent parameters, smaller updates for frequent parameters.

It uses a different learning rate for every parameter θi at every time step t,

67

A diagonal matrix where each
diagonal element is the sum of the
squares of the gradients w.r.t. θi up
to time step t

smoothing term that avoids division
by zero

Problem: learning rate continuously decreases, and training can stall -- fixed by
using rolling average in AdaDelta, RMSProp, Adam.

Adaptive Moment Estimation (Adam)
m_t and v_t are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively, hence the name of the method.

68

like momentum

rolling average!

Adaptive Moment Estimation (Adam)
m_t and v_t are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively, hence the name of the method.

As m_t and v_t are initialized as vectors of 0’s, the authors of Adam observe that they are
biased towards zero, especially during the initial time steps, and especially when the decay
rates are small (i.e. β1 and β2 are close to 1). They counteract these biases by computing
bias-corrected first and second moment estimates,

Then update the parameters

69

like momentum

rolling average!

Training Tricks
Shuffling the Training Data Every Epoch: avoid providing the training examples in a
meaningful order to our model as this may bias the optimization algorithm.

Regularization: L2 regularization adds L2 norm of parameters to the loss function.

Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

Learning Rate Decay: gradually reduce learning rate as training continues

Early stopping
● You should thus always monitor error on a validation set during training and stop (with

some patience) if your validation error does not improve enough.
● Use Patience

70

Parameter Initialization
Very Important for neural networks to achieve good performance.

Uniform Initialization: Initialize weights in some range, such as [-0.1, 0.1] for
example

Xavier Initialization: n(l) is the number of input units to W (fan-in) and n(l+1) is
the number of output units from W (fan-out).

71

